1
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Mondal P, Wijeratne GB. Modeling Tryptophan/Indoleamine 2,3-Dioxygenase with Heme Superoxide Mimics: Is Ferryl the Key Intermediate? J Am Chem Soc 2020; 142:1846-1856. [PMID: 31870154 DOI: 10.1021/jacs.9b10498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tryptophan oxidation in biology has been recently implicated in a vast array of paramount pathogenic conditions in humans, including multiple sclerosis, rheumatoid arthritis, type-I diabetes, and cancer. This 2,3-dioxygenative cleavage of the indole ring of tryptophan with dioxygen is mediated by two heme enzymes, tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO), during its conversion to N-formylkynurenine in the first and rate-limiting step of kynurenine pathway. Despite the pivotal significance of this enzymatic transformation, a vivid viewpoint of the precise mechanistic events is far from complete. A heme superoxide adduct is thought to be the active oxidant in both TDO and IDO, which, following O-O bond cleavage, presumably generates a key ferryl (FeIV=O) reaction intermediate. This study, for the first time in model chemistry, demonstrates the potential of synthetic heme superoxide adducts to mimic the bioinorganic chemistry of indole dioxygenation by TDO and IDO, challenging the widely accepted categorization of these metal adducts as weak oxidants. Herein, an electronically divergent series of ferric heme superoxo oxidants mediates the facile conversion of an array of indole substrates into their corresponding 2,3-dioxygenated products, while shedding light on an unequivocally occurring, putative ferryl intermediate. The oxygenated indole products have been isolated in ∼31% yield, and characterized by LC-MS, 1H and 13C NMR, and FT-IR methodologies, as well as by 18O2(g) labeling experiments. Distinctly, the most electron-deficient superoxo adduct is observed to react the fastest, specifically with the most electron-rich indole substrate, underscoring the cruciality of electrophilicity of the heme superoxide moiety in facilitating the initial indole activation step. Comprehensive understanding of such mechanistic subtleties will benefit future attempts in the rational design of salient therapeutic agents, including next generation anticancer drug targets with amplified effectivity.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35205 , United States
| | - Gayan B Wijeratne
- Department of Chemistry , University of Alabama at Birmingham , Birmingham , Alabama 35205 , United States
| |
Collapse
|
3
|
Kim H, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Heme-Cu Binucleating Ligand Supports Heme/O 2 and Fe II-Cu I/O 2 Reactivity Providing High- and Low-Spin Fe III-Peroxo-Cu II Complexes. Inorg Chem 2019; 58:15423-15432. [PMID: 31657921 DOI: 10.1021/acs.inorgchem.9b02521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The focus of this study is in the description of synthetic heme/copper/O2 chemistry employing a heme-containing binucleating ligand which provides a tridentate chelate for copper ion binding. The addition of O2 (-80 °C, tetrahydrofuran (THF) solvent) to the reduced heme compound (PImH)FeII (1), gives the oxy-heme adduct, formally a heme-superoxide complex FeIII-(O2•-) (2) (resonance Raman spectroscopy (rR): νO-O, 1171 cm-1 (Δ18O2, -61 cm-1); νFe-O, 575 cm-1 (Δ18O2, -24 cm-1)). Simple warming of 2 to room temperature regenerates reduced complex 1; this reaction is reversible, as followed by UV-vis spectroscopy. Complex 2 is electron paramagnetic resonance (EPR)-silent and exhibits upfield-shifted pyrrole resonances (δ 9.12 ppm) in 2H NMR spectroscopy, indicative of a six-coordinate low-spin heme. The coordination of the tethered imidazolyl arm to the heme-superoxide complex as an axial base ligand is suggested. We also report the new fully reduced heme-copper complex [(PImH)FeIICuI]+ (3), where the copper ion is bound to the tethered tridentate portion of PImH. This reacts with O2 to give a distinctive low-temperature-stable, high-spin (S = 2, overall) peroxo-bridged complex [(PImH)FeIII-(O22-)-CuII]+ (3a): λmax, 420 (Soret), 545, 565 nm; δpyrr, 93 ppm; νO-O, 799 cm-1 (Δ18O2, -48 cm-1); νFe-O, 524 cm-1 (Δ18O2, -23 cm-1). To 3a, the addition of dicyclohexylimidazole (DCHIm), which serves as a heme axial base, leads to low-spin (S = 0 overall) species complex [(DCHIm)(PImH)FeIII-(O22-)-CuII]+ (3b): λmax, 425 (Soret), 538 nm; δpyrr, 10.2 ppm; νO-O, 817 cm-1 (Δ18O2, -55 cm-1); νFe-O, 610 cm-1 (Δ18O2, -26 cm-1). These investigations into the characterization of the O2-adducts from (PImH)FeII (1) with/without additional copper chelation advance our understanding of the dioxygen reactivity of heme-only and heme/Cu-ligand heterobinuclear system, thus potentially relevant to O2 reduction in heme-copper oxidases or fuel-cell chemistry.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Savita K Sharma
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Andrew W Schaefer
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Kenneth D Karlin
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
4
|
Ehudin MA, Gee LB, Sabuncu S, Braun A, Moenne-Loccoz P, Hedman B, Hodgson KO, Solomon EI, Karlin KD. Tuning the Geometric and Electronic Structure of Synthetic High-Valent Heme Iron(IV)-Oxo Models in the Presence of a Lewis Acid and Various Axial Ligands. J Am Chem Soc 2019; 141:5942-5960. [PMID: 30860832 PMCID: PMC6611672 DOI: 10.1021/jacs.9b00795] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
High-valent ferryl species (e.g., (Por)FeIV═O, Cmpd-II) are observed or proposed key oxidizing intermediates in the catalytic cycles of heme-containing enzymes (P-450s, peroxidases, catalases, and cytochrome c oxidase) involved in biological respiration and oxidative metabolism. Herein, various axially ligated iron(IV)-oxo complexes were prepared to examine the influence of the identity of the base. These were generated by addition of various axial ligands (1,5-dicyclohexylimidazole (DCHIm), a tethered-imidazole system, and sodium derivatives of 3,5-dimethoxyphenolate and imidazolate). Characterization was carried out via UV-vis, electron paramagnetic resonance (EPR), 57Fe Mössbauer, Fe X-ray absorption (XAS), and 54/57Fe resonance Raman (rR) spectroscopies to confirm their formation and compare the axial ligand perturbation on the electronic and geometric structures of these heme iron(IV)-oxo species. Mössbauer studies confirmed that the axially ligated derivatives were iron(IV) and six-coordinate complexes. XAS and 54/57Fe rR data correlated with slight elongation of the iron-oxo bond with increasing donation from the axial ligands. The first reported synthetic H-bonded iron(IV)-oxo heme systems were made in the presence of the protic Lewis acid, 2,6-lutidinium triflate (LutH+), with (or without) DCHIm. Mössbauer, rR, and XAS spectroscopic data indicated the formation of molecular Lewis acid ferryl adducts (rather than full protonation). The reduction potentials of these novel Lewis acid adducts were bracketed through addition of outer-sphere reductants. The oxidizing capabilities of the ferryl species with or without Lewis acid vary drastically; addition of LutH+ to F8Cmpd-II (F8 = tetrakis(2,6-difluorophenyl)porphyrinate) increased its reduction potential by more than 890 mV, experimentally confirming that H-bonding interactions can increase the reactivity of ferryl species.
Collapse
Affiliation(s)
- Melanie A. Ehudin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Leland B. Gee
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Sinan Sabuncu
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Augustin Braun
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Pierre Moenne-Loccoz
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
5
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Reed CJ, Agapie T. Tetranuclear Fe Clusters with a Varied Interstitial Ligand: Effects on the Structure, Redox Properties, and Nitric Oxide Activation. Inorg Chem 2018; 56:13360-13367. [PMID: 29052979 DOI: 10.1021/acs.inorgchem.7b02114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A new series of tetranuclear Fe clusters displaying an interstitial μ4-F ligand was prepared for a comparison to previously reported μ4-O analogues. With a single nitric oxide (NO) coordinated as a reporter of small-molecule activation, the μ4-F clusters were characterized in five redox states, from FeII3{FeNO}8 to FeIII3{FeNO}7, with NO stretching frequencies ranging from 1680 to 1855 cm-1, respectively. Despite accessing more reduced states with an F- bridge, a two-electron reduction of the distal Fe centers is necessary for the μ4-F clusters to activate NO to the same degree as the μ4-O system; consequently, NO reactivity is observed at more positive potentials with μ4-O than μ4-F. Moreover, the μ4-O ligand better translates redox changes of remote metal centers to diatomic ligand activation. The implication for biological active sites is that the higher-charge bridging ligand is more effective in tuning cluster properties, including the involvement of remote metal centers, for small-molecule activation.
Collapse
Affiliation(s)
- Christopher J Reed
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
7
|
Sharma SK, Schaefer AW, Lim H, Matsumura H, Moënne-Loccoz P, Hedman B, Hodgson KO, Solomon EI, Karlin KD. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex-The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species. J Am Chem Soc 2017; 139:17421-17430. [PMID: 29091732 PMCID: PMC5783694 DOI: 10.1021/jacs.7b08468] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxynitrite (-OON═O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O2•-) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-FeIII complex [(PIm)FeIII(-OON═O)] (3) (PIm; a porphyrin moiety with a covalently tethered imidazole axial "base" donor ligand) has been identified and characterized by various spectroscopies (UV-vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at -80 °C by addition of ·NO(g) to the heme-superoxo species, [(PIm)FeIII(O2•-)] (2). DFT calculations confirm that 3 is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex 3 thermally transforms to its isomeric low-spin nitrato form [(PIm)FeIII(NO3-)] (4a). While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di-tert-butylphenol (2,4DTBP) to complex 3 does not lead to nitrated phenol; the nitrate complex 4a still forms. DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O-O cleavage, giving nitrogen dioxide (·NO2) plus a ferryl compound [(PIm)FeIV═O] (7); this rebounds to give [(PIm)FeIII(NO3-)] (4a).The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.
Collapse
Affiliation(s)
- Savita K. Sharma
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Andrew W. Schaefer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hirotoshi Matsumura
- Division of Environmental & Biomolecular Systems, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Pierre Moënne-Loccoz
- Division of Environmental & Biomolecular Systems, Oregon Health & Science University, Portland, Oregon 97239-3098, United States
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Celebrating Ed Solomon. J Biol Inorg Chem 2016. [DOI: 10.1007/s00775-016-1383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|