1
|
Wu C, Wang S, Sun D, Chen J, Ji W, Wang Y, Nam W, Wang B. Nonheme Manganese-Catalyzed Oxidative N-Dealkylation of Tertiary Amides: Manganese(IV)-Oxo Aminopyridine Cation Radical Species and Hydride Transfer Mechanism. J Am Chem Soc 2025; 147:11432-11445. [PMID: 40106792 DOI: 10.1021/jacs.5c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The development of efficient and practical N-dealkylation reactions stands as a longstanding objective in synthetic chemistry. Inspired by the oxidative N-dealkylation reactions mediated by heme and nonheme metalloenzymes, we disclose a biomimetic oxidative N-dealkylation catalysis that utilizes a nonheme manganese complex bearing anthryl-appended aminopyridine ligand and hydrogen peroxide (H2O2) as the terminal oxidant. A variety of Weinreb amides and cyclic aliphatic amines are efficiently transformed into valuable methyl hydroxamates and ω-amino acids through oxidative C-N bond cleavage. Mechanistic studies, including density functional theory (DFT) calculations, reveal that a manganese(IV)-oxo aminopyridine cation radical species, which is formed via the bromoacetic acid-assisted heterolytic O-O bond cleavage of a presumed manganese(III)-hydroperoxo aminopyridine species and the subsequent intramolecular electron transfer (ET) from the anthryl group of the aminopyridine ligand to the manganese center, is the active intermediate that initiates the oxidative N-dealkylation reactions; this process is reminiscent to the heterolytic O-O bond cleavage of iron(III)-hydroperoxo porphyrin intermediates (Cpd 0) to form iron(IV)-oxo porphyrin π-cation radicals (Cpd I) that are responsible for diverse selective oxidation reactions. Moreover, it is revealed that the oxidative activation of the C-H bond adjacent to the nitrogen atom proceeds via a hydride transfer (HT) mechanism, which involves a concerted asynchronous proton-coupled electron transfer (PCET), followed by an ET process. Thus, this study reports the first instance of catalytic oxidative N-dealkylation of a variety of tertiary amides, such as Weinreb amides and cyclic aliphatic amines, mediated by a Cpd I-like nonheme manganese(IV)-oxo aminopyridine cation radical species via an initial HT pathway.
Collapse
Affiliation(s)
- Chunxia Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shoujun Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Dongru Sun
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
2
|
Jana S, Pattanayak S, Das S, Ghosh M, Velasco L, Moonshiram D, Sen Gupta S. Comparing the reactivity of an oxoiron(IV) cation radical and its oxoiron(V) tautomer towards C-H bonds. Chem Commun (Camb) 2023; 59:2755-2758. [PMID: 36779358 DOI: 10.1039/d2cc07005g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
An oxoiron(IV) cation radical is generated upon two-electron oxidation of an iron(III) complex bearing an electron-rich methoxy substituted bTAML framework and thoroughly characterized via multiple spectroscopic techniques and density functional theory (DFT). Reactivity studies demonstrate faster rates for oxidation of strong aliphatic sp3 C-H bonds than for its corresponding oxoiron(V) valence tautomer.
Collapse
Affiliation(s)
- Sandipan Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Santanu Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Munmun Ghosh
- Department of Chemistry, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India.
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain.
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain.
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
3
|
Wang Y, Shi N, He Y, Li Y, Zheng Q. A direct approach toward investigating DNA-ligand interactions via surface-enhanced Raman spectroscopy combined with molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:2153-2160. [PMID: 36562542 DOI: 10.1039/d2cp04566d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Small molecules that interfere with DNA replication can trigger genomic instability, which makes these molecules valuable in the search for anticancer drugs. Thus, interactions between DNA and its ligands at the molecular level are of great significance. In the present study, a new method based on surface-enhanced Raman spectroscopy (SERS) combined with molecular dynamics simulations has been proposed for analyzing the interactions between DNA and its ligands. The SERS signals of DNA hairpins (ST: d(CGACCAACGTGTCGCCTGGTCG), AP1: d(CGCACAACGTGTCGCCTGTGCG)), pure argininamide, and their complexes, were obtained, and the characteristic peak sites of the DNA secondary structure and argininamide ligand-binding region were analyzed. Molecular dynamics calculations predicted that argininamide binds to the 8C and 9G bases of AP1 via hydrogen bonding. Our method successfully detected the changes of SERS fingerprint peaks of hydrogen bonds and bases between argininamide and DNA hairpin bases, and their binding sites and action modes were consistent with the predicted results of the molecular dynamics simulations. This SERS technology combined with the molecular dynamics simulation detection platform provides a general analysis tool, with the advantage of effective, rapid, and sensitive detection. This platform can obtain sufficient molecular level conformational information to provide avenues for rapid drug screening and promote progress in several fields, including targeted drug design.
Collapse
Affiliation(s)
- Yunpeng Wang
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| | - Yingying He
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Yang Li
- College of Pharmacy, Research Center for Innovative Technology of Pharmaceutical Analysis, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China.
| |
Collapse
|
4
|
Shi N, Zheng Q, Zhang H. Molecular Basis of the Recognition of Cholesterol by Cytochrome P450 46A1 along the Major Access Tunnel. ACS Chem Neurosci 2022; 13:1526-1533. [PMID: 35438962 DOI: 10.1021/acschemneuro.1c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
CYP46A1 is an important potential target for the treatment of Alzheimer's disease (AD), which is the most common neurodegenerative disease among older individuals. However, the binding mechanism between CYP46A1 and substrate cholesterol (CH) has not been clarified and will not be conducive to the research of relevant drug molecules. In this study, we integrated molecular docking, molecular dynamics (MD) simulations, and adaptive steered MD simulations to explore the recognition and binding mechanism of CYP46A1 with CH. Two key factors affecting the interaction between CH and CYP46A1 are determined: one is a hydrophobic cavity formed by seven hydrophobic residues (F80, Y109, L112, I222, W368, F371, and T475), which provides nonpolar interactions to stabilize CH, and the other is a hydrogen bond formed by H81 and CH, which ensures the binding direction of CH. In addition, the tunnel analysis results show that tunnel 2a is identified as the primary pathway of CH. The entry of CH induces tunnel 2e to close and tunnel w to open. Our results may provide effective clues for the design of drugs based on the substrate for AD and improve our understanding of the structure-function of CYP46A1.
Collapse
Affiliation(s)
- Na Shi
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| | - Qingchuan Zheng
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, China
| | - Hongxing Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
5
|
Wong HPH, Mokkawes T, de Visser SP. Can the isonitrile biosynthesis enzyme ScoE assist with the biosynthesis of isonitrile groups in drug molecules? A computational study. Phys Chem Chem Phys 2022; 24:27250-27262. [DOI: 10.1039/d2cp03409c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Computational studies show that the isonitrile synthesizing enzyme ScoE can catalyse the conversion of γ-Gly substituents in substrates to isonitrile. This enables efficient isonitrile substitution into target molecules such as axisonitrile-1.
Collapse
Affiliation(s)
- Henrik P. H. Wong
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Thirakorn Mokkawes
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
6
|
Shteinman AA, Mitra M. Nonheme mono- and dinuclear iron complexes in bio-inspired C H and C C bond hydroxylation reactions: Mechanistic insight. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non‐Heme Iron(IV)‐Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Aniruddha Paik
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sheuli Sasmal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sabarni Paul
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sujoy Rana
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
8
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non-Heme Iron(IV)-Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021; 60:14030-14039. [PMID: 33836110 DOI: 10.1002/anie.202102484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023]
Abstract
The oxygen atom transfer (OAT) reactivity of the non-heme [FeIV (2PyN2Q)(O)]2+ (2) containing the sterically bulky quinoline-pyridine pentadentate ligand (2PyN2Q) has been thoroughly studied with different olefins. The ferryl-oxo complex 2 shows excellent OAT reactivity during epoxidations. The steric encumbrance and electronic effect of the ligand influence the mechanistic shuttle between OAT pathway I and isomerization pathway II (during the reaction stereo pure olefins), resulting in a mixture of cis-trans epoxide products. In contrast, the sterically less hindered and electronically different [FeIV (N4Py)(O)]2+ (1) provides only cis-stilbene epoxide. A Hammett study suggests the role of dominant inductive electronic along with minor resonance effect during electron transfer from olefin to 2 in the rate-limiting step. Additionally, a computational study supports the involvement of stepwise pathways during olefin epoxidation. The ferryl bend due to the bulkier ligand incorporation leads to destabilization of both d z 2 and d x 2 - y 2 orbitals, leading to a very small quintet-triplet gap and enhanced reactivity for 2 compared to 1. Thus, the present study unveils the role of steric and electronic effects of the ligand towards mechanistic modification during olefin epoxidation.
Collapse
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Aniruddha Paik
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sabarni Paul
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
9
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
10
|
Zima AM, Lyakin OY, Bryliakov KP, Talsi EP. High‐Spin and Low‐Spin Perferryl Intermediates in Fe(PDP)‐Catalyzed Epoxidations. ChemCatChem 2019. [DOI: 10.1002/cctc.201900842] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alexandra M. Zima
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Oleg Y. Lyakin
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Konstantin P. Bryliakov
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis Pr. Lavrentieva 5 Novosibirsk 630090 Russia
- Novosibirsk State University Pirogova 2 Novosibirsk 630090 Russia
| |
Collapse
|
11
|
Pattanayak S, Cantú Reinhard FG, Rana A, Gupta SS, de Visser SP. The Equatorial Ligand Effect on the Properties and Reactivity of Iron(V) Oxo Intermediates. Chemistry 2019; 25:8092-8104. [DOI: 10.1002/chem.201900708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Santanu Pattanayak
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 India
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Atanu Rana
- Indian Association for the Cultivation of Sciences 2A Raja S. C. Mullick Road Kolkata 700032 India
| | - Sayam Sen Gupta
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246 India
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical ScienceThe University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
12
|
Simonova OR, Zaitseva SV, Tyulyaeva EY, Zdanovich SA, Koifman OI. Kinetics of β-Carotene Oxidation in the Presence of Highly Active Forms of µ-Carbido Diiron(IV) Tetraphenylporphyrinate. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418110390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Saito T, Takano Y. Transition State Search Using rPM6: Iron- and Manganese-Catalyzed Oxidation Reactions as a Test Case. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194, Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194, Japan
| |
Collapse
|
14
|
Wang W, Sun Q, Xia C, Sun W. Enantioselective epoxidation of olefins with hydrogen peroxide catalyzed by bioinspired aminopyridine manganese complexes derived from L-proline. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(18)63116-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
Li L, Song HJ, Meng XG, Yang RQ, Zhang N. Efficient epoxidation reaction of terminal olefins with hydrogen peroxide catalyzed by an iron (II) complex. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
16
|
Serrano-Plana J, Acuña-Parés F, Dantignana V, Oloo WN, Castillo E, Draksharapu A, Whiteoak CJ, Martin-Diaconescu V, Basallote MG, Luis JM, Que L, Costas M, Company A. Acid-Triggered O-O Bond Heterolysis of a Nonheme Fe III (OOH) Species for the Stereospecific Hydroxylation of Strong C-H Bonds. Chemistry 2018; 24:5331-5340. [PMID: 29193378 DOI: 10.1002/chem.201704851] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Indexed: 12/11/2022]
Abstract
A novel hydroperoxoiron(III) species [FeIII (OOH)(MeCN)(PyNMe3 )]2+ (3) has been generated by reaction of its ferrous precursor [FeII (CF3 SO3 )2 (PyNMe3 )] (1) with hydrogen peroxide at low temperatures. This species has been characterized by several spectroscopic techniques and cryospray mass spectrometry. Similar to most of the previously described low-spin hydroperoxoiron(III) compounds, 3 behaves as a sluggish oxidant and it is not kinetically competent for breaking weak C-H bonds. However, triflic acid addition to 3 causes its transformation into a much more reactive compound towards organic substrates that is capable of oxidizing unactivated C-H bonds with high stereospecificity. Stopped-flow kinetic analyses and theoretical studies provide a rationale for the observed chemistry, a triflic-acid-assisted heterolytic cleavage of the O-O bond to form a putative strongly oxidizing oxoiron(V) species. This mechanism is reminiscent to that observed in heme systems, where protonation of the hydroperoxo intermediate leads to the formation of the high-valent [(Porph. )FeIV (O)] (Compound I).
Collapse
Affiliation(s)
- Joan Serrano-Plana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Ferran Acuña-Parés
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.,Institute of Chemical Research of Catalonia (ICIQ), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Valeria Dantignana
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Williamson N Oloo
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Esther Castillo
- Departamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica Inorgánica, Universidad de Cádiz, Facultad de Ciencias, Apdo. 40, 11510, Puerto Real, Cádiz, Spain
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher J Whiteoak
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Manuel G Basallote
- Departamento de Ciencia de los Materiales e Ingeniería MetalúrgicayQuímica Inorgánica, Universidad de Cádiz, Facultad de Ciencias, Apdo. 40, 11510, Puerto Real, Cádiz, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| | - Anna Company
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/ M. Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain
| |
Collapse
|
17
|
Mukherjee G, Lee CWZ, Nag SS, Alili A, Cantú Reinhard FG, Kumar D, Sastri CV, de Visser SP. Dramatic rate-enhancement of oxygen atom transfer by an iron(iv)-oxo species by equatorial ligand field perturbations. Dalton Trans 2018; 47:14945-14957. [DOI: 10.1039/c8dt02142b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactivity and characterization of a novel iron(iv)-oxo species is reported that gives enhanced reactivity as a result of second-coordination sphere perturbations of the ligand system.
Collapse
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- India
| | - Calvin W. Z. Lee
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | | | - Aligulu Alili
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Fabián G. Cantú Reinhard
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| | - Devesh Kumar
- Department of Applied Physics
- School for Physical Sciences
- Babasaheb Bhimrao Ambedkar University
- Lucknow 226025
- India
| | | | - Sam P. de Visser
- The Manchester Institute of Biotechnology and the School of Chemical Engineering and Analytical Science
- The University of Manchester
- Manchester M1 7DN
- UK
| |
Collapse
|