1
|
Gupta S, Arora P, Aghaei Z, Singh B, Jackson TA, Draksharapu A. Formation and Reactivity of a Mn IV(O)(μ-O)Ce IV Species: A Closest Mimic of Photosystem II. J Am Chem Soc 2025; 147:619-626. [PMID: 39687935 DOI: 10.1021/jacs.4c12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Understanding the basic structure of the oxygen-evolving complex (OEC) in photosystem II (PS-II) and the water oxidation mechanism can aid in the discovery of more efficient and sustainable catalysts for water oxidation. In this context, we present evidence of the formation of a [(TPA)MnIV(O)(μ-O)CeIV(NO3)3]+ (2) complex (TPA = tris(pyridyl-2-methyl)amine) by adding aqueous ceric ammonium nitrate to an acetonitrile solution of the [(TPA)MnII]2+ (1) complex. This unique intermediate (2) was analyzed by using various spectroscopic techniques and electrospray ionization mass spectrometry. Remarkably, 2 closely mimics the structure of MnV(O)(μ-O)CaII(OH2) proposed in the OEC of PS-II. Notably, 2 reacts effectively with ferrocene derivatives, indicating that redox-active CeIV binding enhances the electron transfer efficiency. Additionally, 2 demonstrated the ability to perform oxygen atom transfer and hydrogen atom abstraction reactions. The discovery of this reactive [(TPA)MnIV(O)(μ-O)CeIV(NO3)3]+ species provides exciting opportunities for investigating the structure of the MnV(O)(μ-O)CaII(OH2) unit in the OEC.
Collapse
Affiliation(s)
- Sikha Gupta
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pragya Arora
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Zahra Aghaei
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Baghendra Singh
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Apparao Draksharapu
- Southern Laboratories-208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Barlow K, Phelps R, Eng J, Katayama T, Sutcliffe E, Coletta M, Brechin EK, Penfold TJ, Johansson JO. Tracking nuclear motion in single-molecule magnets using femtosecond X-ray absorption spectroscopy. Nat Commun 2024; 15:4043. [PMID: 38744877 PMCID: PMC11094174 DOI: 10.1038/s41467-024-48411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
The development of new data storage solutions is crucial for emerging digital technologies. Recently, all-optical magnetic switching has been achieved in dielectrics, proving to be faster than traditional methods. Despite this, single-molecule magnets (SMMs), which are an important class of magnetic materials due to their nanometre size, remain underexplored for ultrafast photomagnetic switching. Herein, we report femtosecond time-resolved K-edge X-ray absorption spectroscopy (TR-XAS) on a Mn(III)-based trinuclear SMM. Exploiting the elemental specificity of XAS, we directly track nuclear dynamics around the metal ions and show that the ultrafast dynamics upon excitation of a crystal-field transition are dominated by a magnetically active Jahn-Teller mode. Our results, supported by simulations, reveal minute bond length changes from 0.01 to 0.05 Å demonstrating the sensitivity of the method. These geometrical changes are discussed in terms of magneto-structural relationships and consequently our results illustrate the importance of TR-XAS for the emerging area of ultrafast molecular magnetism.
Collapse
Affiliation(s)
- Kyle Barlow
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Ryan Phelps
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Julien Eng
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Erica Sutcliffe
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Marco Coletta
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Euan K Brechin
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK
| | - Thomas J Penfold
- Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - J Olof Johansson
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| |
Collapse
|
3
|
Grotemeyer EN, Parham JD, Jackson TA. Reaction landscape of a mononuclear Mn III-hydroxo complex with hydrogen peroxide. Dalton Trans 2023; 52:14350-14370. [PMID: 37767937 DOI: 10.1039/d3dt02672h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Peroxomanganese species have been proposed as key intermediates in the catalytic cycles of both manganese enzymes and synthetic catalysts. However, many of these intermediates have yet to be observed. Here, we report the formation of a series of intermediates, each generated from the reaction of the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq2Me)]+ with hydrogen peroxide under slightly different conditions. By changing the acidity of the reaction mixture and/or the quantity of hydrogen peroxide added, we are able to control which intermediate forms. Using a combination of electronic absorption, 1H NMR, EPR, and X-ray absorption spectroscopies, as well as density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations, we formulate these intermediates as the bis(μ-oxo)dimanganese(III,IV) complex [MnIIIMnIV(μ-O)2(dpaq2Me)2]+, the MnIII-hydroperoxo complex [MnIII(OOH)(dpaq2Me)]+, and the MnIII-peroxo complex [MnIII(O2)(dpaq2Me)]. The formation of the MnIII-hydroperoxo species from the reaction of a MnIII-hydroxo complex with hydrogen peroxide mimics an elementary reaction proposed for many synthetic manganese catalysts that activate hydrogen peroxide.
Collapse
Affiliation(s)
- Elizabeth N Grotemeyer
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Joshua D Parham
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
4
|
Karmalkar DG, Seo MS, Lee YM, Kim Y, Lee E, Sarangi R, Fukuzumi S, Nam W. Deeper Understanding of Mononuclear Manganese(IV)-Oxo Binding Brønsted and Lewis Acids and the Manganese(IV)-Hydroxide Complex. Inorg Chem 2021; 60:16996-17007. [PMID: 34705465 DOI: 10.1021/acs.inorgchem.1c02119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of Lewis acidic metal ions and Brønsted acid at the metal-oxo group of high-valent metal-oxo complexes enhances their reactivities significantly in oxidation reactions. However, such a binding of Lewis acids and proton at the metal-oxo group has been questioned in several cases and remains to be clarified. Herein, we report the synthesis, characterization, and reactivity studies of a mononuclear manganese(IV)-oxo complex binding triflic acid, {[(dpaq)MnIV(O)]-HOTf}+ (1-HOTf). First, 1-HOTf was synthesized and characterized using various spectroscopic techniques, including resonance Raman (rRaman) and X-ray absorption spectroscopy/extended X-ray absorption fine structure. In particular, in rRaman experiments, we observed a linear correlation between the Mn-O stretching frequencies of 1-HOTf (e.g., νMn-O at ∼793 cm-1) and 1-Mn+ (Mn+ = Ca2+, Zn2+, Lu3+, Al3+, or Sc3+) and the Lewis acidities of H+ and Mn+ ions, suggesting that H+ and Mn+ bind at the metal-oxo moiety of [(dpaq)MnIV(O)]+. Interestingly, a single-crystal structure of 1-HOTf was obtained by X-ray diffraction analysis, but the structure was not an expected Mn(IV)-oxo complex but a Mn(IV)-hydroxide complex, [(dpaq)MnIV(OH)](OTf)2 (4), with a Mn-O bond distance of 1.8043(19) Å and a Mn-O stretch at 660 cm-1. More interestingly, 4 reverted to 1-HOTf upon dissolution, demonstrating that 1-HOTf and 4 are interconvertible depending on the physical states, such as 1-HOTf in solution and 4 in isolated solid. The reactivity of 1-HOTf was investigated in hydrogen atom transfer (HAT) and oxygen atom transfer (OAT) reactions and then compared with those of 1-Mn+ complexes; an interesting correlation between the Mn-O stretching frequencies of 1-HOTf and 1-Mn+ and their reactivities in the OAT and HAT reactions is reported for the first time in this study.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Youngsuk Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
5
|
Liu C, Liu Y, Zhang B, Sun CJ, Lan D, Chen P, Wu X, Yang P, Yu X, Charlton T, Fitzsimmons MR, Ding J, Chen J, Chow GM. Ferroelectric Self-Polarization Controlled Magnetic Stratification and Magnetic Coupling in Ultrathin La 0.67Sr 0.33MnO 3 Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30137-30145. [PMID: 34137601 DOI: 10.1021/acsami.1c02300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Multiferroic oxide heterostructures consisting of ferromagnetic and ferroelectric components hold the promise for nonvolatile magnetic control via ferroelectric polarization, advantageous for the low-dissipation spintronics. Modern understanding of the magnetoelectric coupling in these systems involves structural, orbital, and magnetic reconstructions at interfaces. Previous works have long proposed polarization-dependent interfacial magnetic structures; however, direct evidence is still missing, which requires advanced characterization tools with near-atomic-scale spatial resolutions. Here, extensive polarized neutron reflectometry (PNR) studies have determined the magnetic depth profiles of PbZr0.2Ti0.8O3/La0.67Sr0.33MnO3 (PZT/LSMO) bilayers with opposite self-polarizations. When the LSMO is 2-3 nm thick, the bilayers show two magnetic transitions on cooling. However, temperature-dependent magnetization is different below the lower-temperature transition for opposite polarizations. PNR finds that the LSMO splits into two magnetic sublayers, but the inter-sublayer magnetic couplings are of opposite signs for the two polarizations. Near-edge X-ray absorption spectroscopy further shows contrasts in both the Mn valences and the Mn-O bond anisotropy between the two polarizations. This work completes the puzzle for the magnetoelectric coupling model at the PZT/LSMO interface, showing a synergic interplay among multiple degrees of freedom toward emergent functionalities at complex oxide interfaces.
Collapse
Affiliation(s)
- Chao Liu
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yaohua Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bangmin Zhang
- School of Physics, Sun Yat-Sen University, Guangzhou510275 Guangdong, China
| | - Cheng-Jun Sun
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Da Lan
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Pingfan Chen
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xiaohan Wu
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Ping Yang
- Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603, Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603, Singapore
| | - Timothy Charlton
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael R Fitzsimmons
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Ding
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Jingsheng Chen
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Gan Moog Chow
- Department of Materials Science & Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
6
|
Mayfield JR, Grotemeyer EN, Jackson TA. Concerted proton-electron transfer reactions of manganese-hydroxo and manganese-oxo complexes. Chem Commun (Camb) 2020; 56:9238-9255. [PMID: 32578605 PMCID: PMC7429365 DOI: 10.1039/d0cc01201g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The enzymes manganese superoxide dismutase and manganese lipoxygenase use MnIII-hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C-H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn-oxo motifs in attacking substrate C-H bonds, presumably by a concerted proton-electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn-hydroxo and Mn-oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of MnIII-hydroxo and MnIV-oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around MnIII-hydroxo and MnIV-oxo motifs permit elucidation of structure-activity relationships. For MnIII-hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the MnIII/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the pKa of the MnII-aqua product, which represents the proton-transfer component for CPET. For MnIV-oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the MnIV-oxo unit results in large rate enhancements for C-H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of MnIII-hydroxo and MnIV-oxo adducts.
Collapse
Affiliation(s)
- Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
7
|
Chen WT, Hsu CW, Lee JF, Pao CW, Hsu IJ. Theoretical Analysis of Fe K-Edge XANES on Iron Pentacarbonyl. ACS OMEGA 2020; 5:4991-5000. [PMID: 32201785 PMCID: PMC7081404 DOI: 10.1021/acsomega.9b03887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 05/21/2023]
Abstract
Iron pentacarbonyl (Fe(CO)5) is a versatile material that is utilized as an inhibitor of flame, shows soot suppressibility, and is used as a precursor for focused electron-beam-induced deposition (FEBID). X-ray absorption near-edge structure (XANES) of the K edge, which is a powerful technique for monitoring the oxidation states and coordination environment of metal sites, can be used to gain insight into Fe(CO)5-related reaction mechanisms in in situ experiments. We use a finite difference method (FDM) and molecular-orbital-based time-dependent density functional theory (TDDFT) calculations to clarify the Fe K-edge XANES features of Fe(CO)5. The two pre-edge peaks P1 and P2 are mainly the Fe(1s) → Fe-C(σ*) and Fe(1s) → Fe-C(π*) transitions, respectively. When the geometry transformed from D 3h to C 4v symmetry, a ∼30% decrease of the pre-edge P2 intensity was observed in the simulated spectra. This implies that the π bonding of Fe and CO is sensitive to changes in geometry. The following rising edge and white line regions are assigned to the Fe(1s) → Fe(4p)(mixing C(2p)) transitions. Our results may provide useful information to interpret XANES spectra variations of in situ reactions of metal-CO or similar compounds with π acceptor ligandlike metal-CN complexes.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Che-Wei Hsu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
| | - Jyh-Fu Lee
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National
Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - I-Jui Hsu
- Department
of Molecular Science and Engineering, National
Taipei University of Technology, Taipei 10608, Taiwan
- Research
and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
- E-mail: .
Tel: +886-2-27712171#2420
| |
Collapse
|
8
|
Rice DB, Grotemeyer EN, Donovan AM, Jackson TA. Effect of Lewis Acids on the Structure and Reactivity of a Mononuclear Hydroxomanganese(III) Complex. Inorg Chem 2020; 59:2689-2700. [PMID: 32045220 DOI: 10.1021/acs.inorgchem.9b02980] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The addition of Sc(OTf)3 and Al(OTf)3 to the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq)]+ (1) gives rise to new intermediates with spectroscopic properties and chemical reactivity distinct from those of [MnIII(OH)(dpaq)]+. The electronic absorption spectra of [MnIII(OH)(dpaq)]+ in the presence of Sc(OTf)3 (1-ScIII) and Al(OTf)3 (1-AlIII) show modest perturbations in electronic transition energies, consistent with moderate changes in the MnIII geometry. A comparison of 1H NMR data for 1 and 1-ScIII confirm this conclusion, as the 1H NMR spectrum of 1-ScIII shows the same number of hyperfine-shifted peaks as the 1H NMR spectrum of 1. These 1H NMR spectra, and that of 1-AlIII, share a similar chemical-shift pattern, providing firm evidence that these Lewis acids do not cause gross distortions to the structure of 1. Mn K-edge X-ray absorption data for 1-ScIII provide evidence of elongation of the axial Mn-OH and Mn-N(amide) bonds relative to those of 1. In contrast to these modest spectroscopic perturbations, 1-ScIII and 1-AlIII show greatly enhanced reactivity toward hydrocarbons. While 1 is unreactive toward 9,10-dihydroanthracene (DHA), 1-ScIII and 1-AlIII react rapidly with DHA (k2 = 0.16(1) and 0.25(2) M-1 s-1 at 50 °C, respectively). The 1-ScIII species is capable of attacking the much stronger C-H bond of ethylbenzene. The basis for these perturbations to the spectroscopic properties and reactivity of 1 in the presence of these Lewis acids was elucidated by comparing properties of 1-ScIII and 1-AlIII with the recently reported MnIII-aqua complex [MnIII(OH2)(dpaq)]2+ ( J. Am. Chem. Soc. 2018, 140, 12695-12699). Because 1-ScIII and 1-AlIII show 1H NMR spectra essentially identical to that of [MnIII(OH2)(dpaq)]2+, the primary effect of these Lewis acids on 1 is protonation of the hydroxo ligand caused by an increase in the Brønsted acidity of the solution.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Anna M Donovan
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
9
|
Krewald V, Neese F, Pantazis DA. Implications of structural heterogeneity for the electronic structure of the final oxygen-evolving intermediate in photosystem II. J Inorg Biochem 2019; 199:110797. [PMID: 31404888 DOI: 10.1016/j.jinorgbio.2019.110797] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/18/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
Heterogeneity in intermediate catalytic states of the oxygen-evolving complex (OEC) of Photosystem II is known from a wide range of experimental and theoretical data, but its potential implications for the mechanism of water oxidation remain unexplored. We delineate the consequences of structural heterogeneity for the final step of the catalytic cycle by tracing the evolution of three spectroscopically relevant and structurally distinct components of the last metastable S3 state to the transient O2-evolving S4 state of the OEC. Using quantum chemical calculations, we show that each S3 isomer leads to a different electronic structure formulation for the active S4 state. Crucially, in addition to previously hypothesized Mn(IV)-oxyl species, we establish for the first time, how a genuine Mn(V)-oxo can be obtained in the catalytically active S4 state: this takes the form of a five-coordinate and locally high-spin (SMn = 1) Mn(V) site. This formulation for the S4 state evolves naturally from a preceding S3-state structural intermediate that contains a quasi-trigonal-bipyramidal Mn(IV) ion. The results strongly suggest that water binding in the S3 state is not prerequisite for reaching the oxygen-evolving S4 state of the complex, supporting the notion that both substrates are preloaded at the beginning of the catalytic cycle. This scenario allows true four-electron metal-centered hole accumulation to precede OO bond formation and hence the latter can proceed via a genuine even-electron mechanism. This can occur as intramolecular nucleophilic coupling of two oxo units synchronously with the binding of a water substrate for the next catalytic cycle.
Collapse
Affiliation(s)
- Vera Krewald
- Theoretische Chemie, Fachbereich Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
10
|
Rice DB, Munasinghe A, Grotemeyer EN, Burr AD, Day VW, Jackson TA. Structure and Reactivity of (μ-Oxo)dimanganese(III,III) and Mononuclear Hydroxomanganese(III) Adducts Supported by Derivatives of an Amide-Containing Pentadentate Ligand. Inorg Chem 2019; 58:622-636. [PMID: 30525518 DOI: 10.1021/acs.inorgchem.8b02794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mononuclear MnIII-hydroxo and dinuclear (μ-oxo)dimanganese(III,III) complexes were prepared using derivatives of the pentadentate, amide-containing dpaq ligand (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate). Each of these ligand derivatives (referred to as dpaq5R) contained a substituent R (where R = OMe, Cl, and NO2) at the 5-position of the quinolinyl group. Generation of the MnIII complexes was achieved by either O2 oxidation of MnII precursors (for [MnII(dpaq5OMe)]+ and [MnII(dpaq5Cl)]+ or PhIO oxidation (for [MnII(dpaq5NO2)]+). For each oxidized complex, 1H NMR experiments provided evidence of a water-dependent equilibrium between paramagnetic [MnIII(OH)(dpaq5R)]+ and an antiferromagnetically coupled [MnIIIMnIII(μ-O)(dpaq5R)2]2+ species in acetonitrile, with the addition of water favoring the MnIII-hydroxo species. This conversion could also be monitored by electronic absorption spectroscopy. Solid-state X-ray crystal structures for each [MnIIIMnIII(μ-O)(dpaq5R)2](OTf)2 complex revealed a nearly linear Mn-O-Mn core (angle of ca. 177°), with short Mn-O distances near 1.79 Å, and a Mn···Mn separation of 3.58 Å. X-ray crystallographic information was also obtained for the mononuclear [MnIII(OH)(dpaq5Cl)](OTf) complex, which has a short Mn-O(H) distance of 1.810(2) Å. The influence of the 5-substituted quinolinyl moiety on the electronic properties of the [MnIII(OH)(dpaq5R)]+ complexes was demonstrated through shifts in a number of 1H NMR resonances, as well as a steady increase in the MnIII/II cyclic voltammetry peak potential in the order [MnIII(OH)(dpaq5OMe)]+ < [MnIII(OH)(dpaq)]+ < [MnIII(OH)(dpaq5Cl)]+ < [MnIII(OH)(dpaq5NO2)]+. These changes in oxidizing power of the MnIII-hydroxo adducts translated to only modest rate enhancements for TEMPOH oxidation by the [MnIII(OH)(dpaq5R)]+ complexes, with the most reactive [MnIII(OH)(dpaq5NO2)]+ complex showing a second-order rate constant only 9-fold larger than that of the least reactive [MnIII(OH)(dpaq5OMe)]+ complex. These modest rate changes were understood on the basis of density functional theory (DFT)-computed p Ka values for the corresponding [MnII(OH2)(dpaq5R)]+ complexes. Collectively, the experimental and DFT results reveal that the 5-substituted quinolinyl groups have an inverse influence on electron and proton affinity for the MnIII-hydroxo unit.
Collapse
Affiliation(s)
- Derek B Rice
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Aruna Munasinghe
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Elizabeth N Grotemeyer
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Andrew D Burr
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Victor W Day
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Timothy A Jackson
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
11
|
Rice DB, Jones SD, Douglas JT, Jackson TA. NMR Studies of a MnIII-hydroxo Adduct Reveal an Equilibrium between MnIII-hydroxo and μ-Oxodimanganese(III,III) Species. Inorg Chem 2018; 57:7825-7837. [DOI: 10.1021/acs.inorgchem.8b00917] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Derek B. Rice
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Shannon D. Jones
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Justin T. Douglas
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
12
|
Parham JD, Wijeratne GB, Rice DB, Jackson TA. Spectroscopic and Structural Characterization of Mn(III)-Alkylperoxo Complexes Supported by Pentadentate Amide-Containing Ligands. Inorg Chem 2018; 57:2489-2502. [DOI: 10.1021/acs.inorgchem.7b02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua D. Parham
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Gayan B. Wijeratne
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Derek B. Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|