1
|
DeWeese DE, Everett MP, Babicz JT, Daruwalla A, Solomon EI, Kiser PD. Spectroscopy and crystallography define carotenoid oxygenases as a new subclass of mononuclear non-heme Fe II enzymes. J Biol Chem 2025; 301:108444. [PMID: 40147775 PMCID: PMC12051055 DOI: 10.1016/j.jbc.2025.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) are non-heme FeII enzymes that catalyze the oxidative cleavage of alkene bonds in carotenoids, stilbenoids, and related compounds. How these enzymes control the reaction of dioxygen (O2) with their alkene substrates is unclear. Here, we apply spectroscopy in conjunction with X-ray crystallography to define the iron coordination geometry of a model CCD, CAO1 (Neurospora crassa carotenoid oxygenase 1), in its resting state and following substrate binding and coordination sphere substitutions. Resting CAO1 exhibits a five-coordinate (5C), square pyramidal FeII center that undergoes steric distortion toward a trigonal bipyramidal geometry in the presence of piceatannol. Titrations with the O2-analog, nitric oxide, show a >100-fold increase in iron-nitric oxide affinity upon substrate binding, defining a crucial role for the substrate in activating the FeII site for O2 reactivity. The importance of the 5C FeII structure for reactivity was probed through mutagenesis of the second-sphere Thr151 residue of CAO1, which occludes ligand binding at the sixth coordination position. A T151G substitution resulted in the conversion of the iron center to a six-coordinate state and a 135-fold reduction in apparent catalytic efficiency toward piceatannol compared with the wildtype enzyme. Substrate complexation resulted in partial six-coordinate to 5C conversion, indicating solvent dissociation from the iron center. Additional substitutions at this site demonstrated a general functional importance of the occluding residue within the CCD superfamily. Taken together, these data suggest an ordered mechanism of CCD catalysis occurring via substrate-promoted solvent replacement by O2. CCDs thus represent a new class of mononuclear non-heme FeII enzymes.
Collapse
Affiliation(s)
- Dory E DeWeese
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Michael P Everett
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, California, USA
| | - Jeffrey T Babicz
- Department of Chemistry, Stanford University, Stanford, California, USA; SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Anahita Daruwalla
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, California, USA
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California, USA; SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA.
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, California, USA; Research Service, VA Long Beach Healthcare System, Long Beach, California, USA.
| |
Collapse
|
2
|
Tian Q, Han W, Zhou S, Yang L, Wang D, Zhou W, Wang Z. Carotenoid Cleavage Dioxygenase Gene CCD4 Enhances Tanshinone Accumulation and Drought Resistance in Salvia miltiorrhiza. Int J Mol Sci 2024; 25:13223. [PMID: 39684932 DOI: 10.3390/ijms252313223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Danshen (Salvia miltiorrhiza Bunge) is a perennial herbaceous plant of the Salvia genus in the family Lamiaceae. Its dry root is one of the important traditional Chinese herbal medicines with a long officinal history. The yield and quality of S. miltiorrhiza are influenced by various factors, among which drought is one of the most significant types of abiotic stress. Based on the transcriptome database of S. miltiorrhiza, our research group discovered a carotenoid cleavage dioxygenase gene, SmCCD4, belonging to the carotenoid cleavage oxygenase (CCO) gene family which is highly responsive to drought stress on the basis of our preceding work. Here, we identified 26 CCO genes according to the whole-genome database of S. miltiorrhiza. The expression pattern of SmCCD4 showed that this gene is strongly overexpressed in the aboveground tissue of S. miltiorrhiza. And by constructing SmCCD4 overexpression strains, it was shown that the overexpression of SmCCD4 not only promotes the synthesis of abscisic acid and increases plant antioxidant activity but also regulates the synthesis of the secondary metabolites tanshinone and phenolic acids in S. miltiorrhiza. In summary, this study is the first in-depth and systematic identification and investigation of the CCO gene family in S. miltiorrhiza. The results provide useful information for further systematic research on the function of CCO genes and provide a theoretical basis for improving the yield and quality of S. miltiorrhiza.
Collapse
Affiliation(s)
- Qian Tian
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Han
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Shuai Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Liu Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Donghao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Wen Zhou
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| | - Zhezhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
3
|
Abstract
Carotenoid cleavage dioxygenases (CCDs) constitute a superfamily of enzymes that are found in all domains of life where they play key roles in the metabolism of carotenoids and apocarotenoids as well as certain phenylpropanoids such as resveratrol. Interest in these enzymes stems not only from their biological importance but also from their remarkable catalytic properties including their regioselectivity, their ability to accommodate diverse substrates, and the additional activities (e.g., isomerase) that some of these enzyme possess. X-ray crystallography is a key experimental approach that has allowed detailed investigation into the structural basis behind the interesting biochemical features of these enzymes. Here, we describe approaches used by our lab that have proven successful in generating single crystals of these enzymes in resting or ligand-bound states for high-resolution X-ray diffraction analysis.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, United States
| | - Xuewu Sui
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine School of Medicine, Irvine, CA, United States; Department of Ophthalmology, Center for Translational Vision Research, University of California, Irvine School of Medicine, Irvine, CA, United States; Research Service, VA Long Beach Healthcare System, Long Beach, CA, United States.
| |
Collapse
|
4
|
Characterization of a Novel Lutein Cleavage Dioxygenase, EhLCD, from Enterobacter hormaechei YT-3 for the Enzymatic Synthesis of 3-Hydroxy-β-ionone from Lutein. Catalysts 2021. [DOI: 10.3390/catal11111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
3-Hydroxy-β-ionone, a flavor and fragrance compound with fruity violet-like characteristics, is widely applied in foodstuff and beverages, and is currently produced using synthetic chemistry. In this study, a novel lutein cleavage enzyme (EhLCD) was purified and characterized from Enterobacter hormaechei YT-3 to convert lutein to 3-hydroxy-β-ionone. Enzyme EhLCD was purified to homogeneity by ammonium sulfate precipitation, Q-Sepharose, phenyl-Sepharose, and Superdex 200 chromatography. The molecular mass of purified EhLCD, obtained by SDS-PAGE, was approximately 50 kDa. The enzyme exhibited the highest activity toward lutein, followed by zeaxanthin, β-cryptoxanthin, and β-carotene, suggesting that EhLCD exhibited higher catalytic efficiency for carotenoid substrates bearing 3-hydroxy-ionone rings. Isotope-labeling experiments showed that EhLCD incorporated oxygen from O2 into 3-hydroxy-β-ionone and followed a dioxygenase reaction mechanism for different carotenoid substrates. These results indicated that EhLCD is the first characterized bacterial lutein cleavage dioxygenase. Active EhLCD was also confirmed to be a Fe2+-dependent protein with 1 molar equivalent of non-haem Fe2+. The purified enzyme displayed optimal activity at 45 °C and pH 8.0. The optimum concentrations of the substrate, enzyme, and Tween 40 for 3-hydroxy-β-ionone production were 60 μM lutein/L, 1.5 U/mL, and 2% (w/v), respectively. Under optimum conditions, EhLCD produced 3-hydroxy-β-ionone (637.2 mg/L) in 60 min with a conversion of 87.0% (w/w), indicating that this enzyme is a potential candidate for the enzymatic synthesis of 3-hydroxy-β-ionone in biotechnological applications.
Collapse
|
5
|
Kuatsjah E, Chan ACK, Katahira R, Haugen SJ, Beckham GT, Murphy MEP, Eltis LD. Structural and functional analysis of lignostilbene dioxygenases from Sphingobium sp. SYK-6. J Biol Chem 2021; 296:100758. [PMID: 33965373 PMCID: PMC8191317 DOI: 10.1016/j.jbc.2021.100758] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022] Open
Abstract
Lignostilbene-α,β-dioxygenases (LSDs) are iron-dependent oxygenases involved in the catabolism of lignin-derived stilbenes. Sphingobium sp. SYK-6 contains eight LSD homologs with undetermined physiological roles. To investigate which homologs are involved in the catabolism of dehydrodiconiferyl alcohol (DCA), derived from β-5 linked lignin subunits, we heterologously produced the enzymes and screened their activities in lysates. The seven soluble enzymes all cleaved lignostilbene, but only LSD2, LSD3, and LSD4 exhibited high specific activity for 3-(4-hydroxy-3-(4-hydroxy-3-methoxystyryl)-5-methoxyphenyl) acrylate (DCA-S) relative to lignostilbene. LSD4 catalyzed the cleavage of DCA-S to 5-formylferulate and vanillin and cleaved lignostilbene and DCA-S (∼106 M−1 s−1) with tenfold greater specificity than pterostilbene and resveratrol. X-ray crystal structures of native LSD4 and the catalytically inactive cobalt-substituted Co-LSD4 at 1.45 Å resolution revealed the same fold, metal ion coordination, and edge-to-edge dimeric structure as observed in related enzymes. Key catalytic residues, Phe-59, Tyr-101, and Lys-134, were also conserved. Structures of Co-LSD4·vanillin, Co-LSD4·lignostilbene, and Co-LSD4·DCA-S complexes revealed that Ser-283 forms a hydrogen bond with the hydroxyl group of the ferulyl portion of DCA-S. This residue is conserved in LSD2 and LSD4 but is alanine in LSD3. Substitution of Ser-283 with Ala minimally affected the specificity of LSD4 for either lignostilbene or DCA-S. By contrast, substitution with phenylalanine, as occurs in LSD5 and LSD6, reduced the specificity of the enzyme for both substrates by an order of magnitude. This study expands our understanding of an LSD critical to DCA catabolism as well as the physiological roles of other LSDs and their determinants of substrate specificity.
Collapse
Affiliation(s)
- Eugene Kuatsjah
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge Tennessee, USA
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Rui Katahira
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Stefan J Haugen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge Tennessee, USA
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada; BioProducts Institute, The University of British Columbia, Vancouver, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, Canada; BioProducts Institute, The University of British Columbia, Vancouver, Canada.
| |
Collapse
|
6
|
Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase. Proc Natl Acad Sci U S A 2020; 117:19914-19925. [PMID: 32747548 DOI: 10.1073/pnas.2004116117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apocarotenoids are important signaling molecules generated from carotenoids through the action of carotenoid cleavage dioxygenases (CCDs). These enzymes have a remarkable ability to cleave carotenoids at specific alkene bonds while leaving chemically similar sites within the polyene intact. Although several bacterial and eukaryotic CCDs have been characterized, the long-standing goal of experimentally visualizing a CCD-carotenoid complex at high resolution to explain this exquisite regioselectivity remains unfulfilled. CCD genes are also present in some archaeal genomes, but the encoded enzymes remain uninvestigated. Here, we address this knowledge gap through analysis of a metazoan-like archaeal CCD from Candidatus Nitrosotalea devanaterra (NdCCD). NdCCD was active toward β-apocarotenoids but did not cleave bicyclic carotenoids. It exhibited an unusual regiospecificity, cleaving apocarotenoids solely at the C14'-C13' alkene bond to produce β-apo-14'-carotenals. The structure of NdCCD revealed a tapered active site cavity markedly different from the broad active site observed for the retinal-forming Synechocystis apocarotenoid oxygenase (SynACO) but similar to the vertebrate retinoid isomerase RPE65. The structure of NdCCD in complex with its apocarotenoid product demonstrated that the site of cleavage is defined by interactions along the substrate binding cleft as well as selective stabilization of reaction intermediates at the scissile alkene. These data on the molecular basis of CCD catalysis shed light on the origins of the varied catalytic activities found in metazoan CCDs, opening the possibility of modifying their activity through rational chemical or genetic approaches.
Collapse
|
7
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Daruwalla A, Kiser PD. Structural and mechanistic aspects of carotenoid cleavage dioxygenases (CCDs). Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158590. [PMID: 31874225 DOI: 10.1016/j.bbalip.2019.158590] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/03/2023]
Abstract
Carotenoid cleavage dioxygenases (CCDs) comprise a superfamily of mononuclear non-heme iron proteins that catalyze the oxygenolytic fission of alkene bonds in carotenoids to generate apocarotenoid products. Some of these enzymes exhibit additional activities such as carbon skeleton rearrangement and trans-cis isomerization. The group also includes a subfamily of enzymes that split the interphenyl alkene bond in molecules such as resveratrol and lignostilbene. CCDs are involved in numerous biological processes ranging from production of light-sensing chromophores to degradation of lignin derivatives in pulping waste sludge. These enzymes exhibit unique features that distinguish them from other families of non-heme iron enzymes. The distinctive properties and biological importance of CCDs have stimulated interest in their modes of catalysis. Recent structural, spectroscopic, and computational studies have helped clarify mechanistic aspects of CCD catalysis. Here, we review these findings emphasizing common and unique properties of CCDs that enable their variable substrate specificity and regioselectivity. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Anahita Daruwalla
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America; Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America
| | - Philip D Kiser
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697, United States of America; Research Service, VA Long Beach Healthcare System, Long Beach, CA 90822, United States of America.
| |
Collapse
|
9
|
Khadka N, Farquhar ER, Hill HE, Shi W, von Lintig J, Kiser PD. Evidence for distinct rate-limiting steps in the cleavage of alkenes by carotenoid cleavage dioxygenases. J Biol Chem 2019; 294:10596-10606. [PMID: 31138651 DOI: 10.1074/jbc.ra119.007535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/24/2019] [Indexed: 11/06/2022] Open
Abstract
Carotenoid cleavage dioxygenases (CCDs) use a nonheme Fe(II) cofactor to split alkene bonds of carotenoid and stilbenoid substrates. The iron centers of CCDs are typically five-coordinate in their resting states, with solvent occupying an exchangeable site. The involvement of this iron-bound solvent in CCD catalysis has not been experimentally addressed, but computational studies suggest two possible roles. 1) Solvent dissociation provides a coordination site for O2, or 2) solvent remains bound to iron but changes its equilibrium position to allow O2 binding and potentially acts as a proton source. To test these predictions, we investigated isotope effects (H2O versus D2O) on two stilbenoid-cleaving CCDs, Novosphingobium aromaticivorans oxygenase 2 (NOV2) and Neurospora crassa carotenoid oxygenase 1 (CAO1), using piceatannol as a substrate. NOV2 exhibited an inverse isotope effect (k H/k D ∼ 0.6) in an air-saturated buffer, suggesting that solvent dissociates from iron during the catalytic cycle. By contrast, CAO1 displayed a normal isotope effect (k H/k D ∼ 1.7), suggesting proton transfer in the rate-limiting step. X-ray absorption spectroscopy on NOV2 and CAO1 indicated that the protonation states of the iron ligands are unchanged within pH 6.5-8.5 and that the Fe(II)-aquo bond is minimally altered by substrate binding. We pinpointed the origin of the differential kinetic behaviors of NOV2 and CAO1 to a single amino acid difference near the solvent-binding site of iron, and X-ray crystallography revealed that the substitution alters binding of diffusible ligands to the iron center. We conclude that solvent-iron dissociation and proton transfer are both associated with the CCD catalytic mechanism.
Collapse
Affiliation(s)
- Nimesh Khadka
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Erik R Farquhar
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973.,Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988, and
| | - Hannah E Hill
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wuxian Shi
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973.,Center for Proteomics and Bioinformatics, Center for Synchrotron Biosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4988, and
| | - Johannes von Lintig
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Philip D Kiser
- From the Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, .,Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106
| |
Collapse
|
10
|
Lu J, Lai W. Mechanistic Insights into a Stibene Cleavage Oxygenase NOV1 from Quantum Mechanical/Molecular Mechanical Calculations. ChemistryOpen 2019; 8:228-235. [PMID: 30828510 PMCID: PMC6382310 DOI: 10.1002/open.201800259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/30/2019] [Indexed: 12/03/2022] Open
Abstract
NOV1, a stilbene cleavage oxygenase, catalyzes the cleavage of the central double bond of stilbenes to two phenolic aldehydes, using a 4-His Fe(II) center and dioxygen. Herein, we use in-protein quantum mechanical/molecular mechanical (QM/MM) calculations to elucidate the reaction mechanism of the central double bond cleavage of phytoalexin resveratrol by NOV1. Our results showed that the oxygen molecule prefers to bind to the iron center in a side-on fashion, as suggested from the experiment. The quintet Fe-O2 complex with the side-on superoxo antiferromagnetic coupled to the resveratrol radical is identified as the reactive oxygen species. The QM/MM results support the dioxygenase mechanism involving a dioxetane intermediate with a rate-limiting barrier of 10.0 kcal mol-1. The alternative pathway through an epoxide intermediate is ruled out due to a larger rate-limiting barrier (26.8 kcal mol-1). These findings provide important insight into the catalytic mechanism of carotenoid cleavage oxygenases and also the dioxygen activation of non-heme enzymes.
Collapse
Affiliation(s)
- Jiarui Lu
- Department of ChemistryRenmin University of ChinaNo. 59 Zhongguancun Street, Haidian DistrictBeijing100872P. R. China
| | - Wenzhen Lai
- Department of ChemistryRenmin University of ChinaNo. 59 Zhongguancun Street, Haidian DistrictBeijing100872P. R. China
| |
Collapse
|