1
|
Michael Kormaník J, Herman D, Andris E, Culka M, Gutten O, Kožíšek M, Bednárová L, Srb P, Veverka V, Rulíšek L. Design of Zn-Binding Peptide(s) from Protein Fragments. Chembiochem 2025; 26:e202401014. [PMID: 39937972 PMCID: PMC12002108 DOI: 10.1002/cbic.202401014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/14/2025]
Abstract
We designed a minimalistic zinc(II)-binding peptide featuring the Cys2His2 zinc-finger motif. To this aim, several tens of thousands of (His/Cys)-Xn-(His/Cys) protein fragments (n=2-20) were first extracted from the 3D protein structures deposited in Protein Data Bank (PDB). Based on geometrical constraints positioning two Cys (C) and two His (H) side chains at the vertices of a tetrahedron, approximately 22 000 sequences of the (H/C)-Xi-(H/C)-Xj-(H/C)-Xk-(H/C) type, satisfying Nmetal-binding H=Nmetal-binding C=2, were processed. Several other criteria, such as the secondary structure content and predicted fold stability, were then used to select the best candidates. To prove the viability of the computational design experimentally, three peptides were synthesized and subjected to isothermal calorimetry (ITC) measurements to determine the binding constants with Zn2+, including the entropy and enthalpy terms. For the strongest Zn2+ ions binding peptide, P1, the dissociation constant was shown to be in the nanomolar range (KD=~220 nM; corresponding to ΔGbind=-9.1 kcal mol-1). In addition, ITC showed that the [P1 : Zn2+] complex forms in 1 : 1 stoichiometry and two protons are released upon binding, which suggests that the zinc coordination involves both cysteines. NMR experiments also indicated that the structure of the [P1 : Zn2+] complex might be quite similar to the computationally predicted one. In summary, our proof-of-principle study highlights the usefulness of our computational protocol for designing novel metal-binding peptides.
Collapse
Affiliation(s)
- Ján Michael Kormaník
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Daniel Herman
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Martin Culka
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Milan Kožíšek
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistryof the Czech Academy of SciencesFlemingovo náměstí 2166 10Prague 6Czech Republic
| |
Collapse
|
2
|
Flores-Fernández CN, O'Callaghan CA. Bacterial DNA methylases as novel molecular and synthetic biology tools: recent developments. Appl Microbiol Biotechnol 2025; 109:60. [PMID: 40047928 PMCID: PMC11885376 DOI: 10.1007/s00253-025-13442-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Bacterial DNA methylases are a diverse group of enzymes which have been pivotal in the development of technologies with applications including genetic engineering, bacteriology, biotechnology and agriculture. This review describes bacterial DNA methylase types, the main technologies for targeted methylation or demethylation and the recent roles of these enzymes in molecular and synthetic biology. Bacterial methylases can be exocyclic or endocyclic and can exist as orphan enzymes or as a part of the restriction-modifications (R-M) systems. As a group, they display a rich diversity of sequence-specificity. Additional technologies for targeting methylation involve using fusion proteins combining a methylase and a DNA-binding protein (DNBP) such as a zinc-finger (ZF), transcription activator-like effector (TALE) or CRISPR/dCas9. Bacterial methylases have contributed significantly to the creation of novel DNA assembly techniques, to the improvement of bacterial transformation and to crop plant engineering. Future studies to define the characteristics of more bacterial methylases have potential to identify new tools of value in synthetic and molecular biology and with widespread applications. KEY POINTS: • Bacterial methylases can be used to direct methylation to specific sequences in target DNA • DNA methylation using bacterial methylases has been applied to improve DNA assembly and to increase the efficiency of bacterial transformation • Site-selective methylation using bacterial methylases can alter plant gene expression and phenotype.
Collapse
Affiliation(s)
- Carol N Flores-Fernández
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chris A O'Callaghan
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
3
|
King A, Noblitt D, Sherron O, Kjerfve C, Pless L, Truex NL. An artificial transcription factor that activates potent interferon-γ expression in human Jurkat T Cells. FRONTIERS IN MOLECULAR MEDICINE 2025; 4:1492370. [PMID: 39844823 PMCID: PMC11751033 DOI: 10.3389/fmmed.2024.1492370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/28/2024] [Indexed: 01/24/2025]
Abstract
Interferon (IFN)-γ is a central regulator of cell-mediated immunity in human health and disease, but reduced expression of the target receptors impairs signaling activity and leads to immunotherapy resistance. Although intracellular expression of IFN-γ restores the signaling and downstream functions, we lack the tools to activate the IFNG gene instead of cell surface receptors. This paper introduces the design and characterization of an artificial transcription factor (ATF) protein that recognizes the IFNG gene with six zinc finger domains, which are dovetailed to a VP64 signaling domain that promotes gene transcription and translation. Biological studies with human Jurkat T cells reveal that the ATF amplifies IFNG gene transcription and translation, and also stimulates gene transcription for multiple class I and II HLA alleles and interferon-stimulated genes (ISGs). Biophysical characterization showed the recombinant ATF protein recognizes the human IFNG gene with nanomolar affinity (KD = 5.27 ± 0.3 nM), adopts a protein secondary structure associated with the ββα-fold of zinc finger domains, and is resistant to thermal denaturation. These studies demonstrate that transcriptional targeting of cytokine genes, rather than surface receptors, activates cytokine expression and shows significant potential for directing immune function.
Collapse
Affiliation(s)
- Ashley King
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Davis Noblitt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Olivia Sherron
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
- College of Engineering and Computing, University of South Carolina, Columbia, SC, United States
| | - Clara Kjerfve
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Lydia Pless
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| | - Nicholas L. Truex
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
4
|
Rua AJ, Alexandrescu AT. Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure. Protein Sci 2024; 33:e5149. [PMID: 39180464 PMCID: PMC11344264 DOI: 10.1002/pro.5149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711, it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal-ligand. The Z7 domain adopts a stable tertiary structure upon metal-binding. The NMR structure of Zn2+-bound Z7 shows the classical ββα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenylalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80°C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitrophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Andrei T. Alexandrescu
- Department of Molecular and Cellular BiologyUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
5
|
Stoltzfus AT, Ballot JG, Vignane T, Li H, Worth MM, Muller L, Siegler MA, Kane MA, Filipovic MR, Goldberg DP, Michel SLJ. Chemoselective Proteomics, Zinc Fingers, and a Zinc(II) Model for H 2S Mediated Persulfidation. Angew Chem Int Ed Engl 2024; 63:e202401003. [PMID: 38808693 PMCID: PMC11346292 DOI: 10.1002/anie.202401003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 05/30/2024]
Abstract
The gasotransmitter hydrogen sulfide (H2S) is thought to be involved in the post-translational modification of cysteine residues to produce reactive persulfides. A persulfide-specific chemoselective proteomics approach with mammalian cells has identified a broad range of zinc finger (ZF) proteins as targets of persulfidation. Parallel studies with isolated ZFs show that persulfidation is mediated by ZnII, O2, and H2S, with intermediates involving oxygen- and sulfur-based radicals detected by mass spectrometry and optical spectroscopies. A small molecule ZnII complex exhibits analogous reactivity with H2S and O2, giving a persulfidated product. These data show that ZnII is not just a biological structural element, but also plays a critical role in mediating H2S-dependent persulfidation. ZF persulfidation appears to be a general post-translational modification and a possible conduit for H2S signaling. This work has implications for our understanding of H2S-mediated signaling and the regulation of ZFs in cellular physiology and development.
Collapse
Affiliation(s)
- Andrew T. Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Jasper G. Ballot
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Thibaut Vignane
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V. Dortmund, Germany, 44139
| | - Haoju Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Madison M. Worth
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ludovic Muller
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Milos R. Filipovic
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V. Dortmund, Germany, 44139
| | - David P. Goldberg
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| |
Collapse
|
6
|
Li H, Stoltzfus AT, Michel SLJ. Mining proteomes for zinc finger persulfidation. RSC Chem Biol 2024; 5:572-585. [PMID: 38846077 PMCID: PMC11151867 DOI: 10.1039/d3cb00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/03/2023] [Indexed: 06/09/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter that signals via persulfidation. There is evidence that the cysteine residues of certain zinc finger (ZF) proteins, a common type of cysteine rich protein, are modified to persulfides by H2S. To determine how frequently ZF persulfidation occurs in cells and identify the types of ZFs that are persulfidated, persulfide specific proteomics data were evaluated. 22 datasets from 16 studies were analyzed via a meta-analysis approach. Persulfidated ZFs were identified in a range of eukaryotic species, including Homo sapiens, Mus musculus, Rattus norvegicus, Arabidopsis thaliana, and Emiliania huxley (single-celled phytoplankton). The types of ZFs identified for each species encompassed all three common ZF ligand sets (4-cysteine, 3-cysteine-1-histidine, and 2-cysteine-2-hisitidine), indicating that persulfidation of ZFs is broad. Overlap analysis between different species identified several common ZFs. GO and KEGG analysis identified pathway enrichment for ubiquitin-dependent protein catabolic process and viral carcinogenesis. These collective findings support ZF persulfidation as a wide-ranging PTM that impacts all classes of ZFs.
Collapse
Affiliation(s)
- Haoju Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| |
Collapse
|
7
|
Rua AJ, Alexandrescu AT. Formerly degenerate seventh zinc finger domain from transcription factor ZNF711 rehabilitated by experimental NMR structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588434. [PMID: 38645208 PMCID: PMC11030341 DOI: 10.1101/2024.04.06.588434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Domain Z7 of nuclear transcription factor ZNF711 has the consensus last metal-ligand H23 found in odd-numbered zinc-fingers of this protein replaced by a phenylalanine. Ever since the discovery of ZNF711 it has been thought that Z7 is probably non-functional because of the H23F substitution. The presence of H26 three positions downstream prompted us to examine if this histidine could substitute as the last metal ligand. The Z7 domain adopts a stable tertiary structure upon metal binding. The NMR structure of Zn2+-bound Z7 shows the classical ββα-fold of CCHH zinc fingers. Mutagenesis and pH titration experiments indicate that H26 is not involved in metal binding and that Z7 has a tridentate metal-binding site comprised of only residues C3, C6, and H19. By contrast, an F23H mutation that introduces a histidine in the consensus position forms a tetradentate ligand. The structure of the WT Z7 is stable causing restricted ring-flipping of phenyalanines 10 and 23. Dynamics are increased with either the H26A or F23H substitutions and aromatic ring rotation is no longer hindered in the two mutants. The mutations have only small effects on the Kd values for Zn2+ and Co2+ and retain the high thermal stability of the WT domain above 80 °C. Like two previously reported designed zinc fingers with the last ligand replaced by water, the WT Z7 domain is catalytically active, hydrolyzing 4-nitophenyl acetate. We discuss the implications of naturally occurring tridentate zinc fingers for cancer mutations and drug targeting of notoriously undruggable transcription factors. Our findings that Z7 can fold with only a subset of three metal ligands suggests the recent view that most everything about protein structure can be predicted through homology modeling might be premature for at least the resilient and versatile zinc-finger motif.
Collapse
Affiliation(s)
- Antonio J Rua
- Department of Molecular and Cellular Biology, University of Connecticut
| | | |
Collapse
|
8
|
Recktenwald M, Hutt E, Davis L, MacAulay J, Daringer NM, Galie PA, Staehle MM, Vega SL. Engineering transcriptional regulation for cell-based therapies. SLAS Technol 2024; 29:100121. [PMID: 38340892 DOI: 10.1016/j.slast.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is often used to explore gene regulation platforms in vitro. However, applications capable of targeting therapeutically relevant endogenous or stably integrated genes are more clinically relevant. Gene regulation may allow for engineered cells to traffic into tissues of interest and secrete functional proteins into the extracellular space or to differentiate into functional cells. Transmembrane receptors that regulate transcription have the potential to revolutionize cell therapies in a myriad of applications, including cancer treatment and regenerative medicine. In this review, we will examine current engineering approaches to control transcription in mammalian cells with an emphasis on systems that can be selectively activated in response to extracellular signals. We will also speculate on the potential therapeutic applications of these technologies and examine promising approaches to expand their capabilities and tighten the control of gene regulation in cellular therapies.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
9
|
Xu P, Lin NQ, Zhang ZQ, Liu JZ. Strategies to increase the robustness of microbial cell factories. ADVANCED BIOTECHNOLOGY 2024; 2:9. [PMID: 39883204 PMCID: PMC11740849 DOI: 10.1007/s44307-024-00018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 01/31/2025]
Abstract
Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer. Therefore, strain robustness is essential to ensure reliable and sustainable production efficiency. In this review, the current strategies to improve host robustness were summarized, including knowledge-based engineering approaches, such as transcription factors, membrane/transporters and stress proteins, and the traditional adaptive laboratory evolution based on natural selection. Computation-assisted (e.g. GEMs, deep learning and machine learning) design of robust industrial hosts was also introduced. Furthermore, the challenges and future perspectives on engineering microbial host robustness are proposed to promote the development of green, efficient and sustainable biomanufacturers.
Collapse
Affiliation(s)
- Pei Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Nuo-Qiao Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhi-Qian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou, 510399, China
| | - Jian-Zhong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Joint Research Center of Engineering Biology Technology of Sun Yat-Sen University and Tidetron Bioworks, Guangzhou, 510275, China.
| |
Collapse
|
10
|
Li B, Liu S, He Z, Luo E, Liu H. The role of zinc finger proteins in the fate determination of mesenchymal stem cells during osteogenic and adipogenic differentiation. Int J Biochem Cell Biol 2024; 167:106507. [PMID: 38142772 DOI: 10.1016/j.biocel.2023.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Zinc finger proteins (ZFPs) constitute a crucial group of transcription factors widely present in various organisms. They act as transcription factors, nucleases, and RNA-binding proteins, playing significant roles in cell differentiation, growth, and development. With extensive research on ZFPs, their roles in the determination of mesenchymal stem cells (MSCs) fate during osteogenic and adipogenic differentiation processes have become increasingly clear. ZFP521, for instance, is identified as an inhibitor of the Wnt signaling pathway and RUNX2's transcriptional activity, effectively suppressing osteogenic differentiation. Moreover, ZFP217 contributes to the inhibition of adipogenic differentiation by reducing the M6A level of the cell cycle regulator cyclin D1 (CCND1). In addition, other ZFPs can also influence the fate of mesenchymal stem cells (MSCs) during osteogenic and adipogenic differentiation through various signaling pathways, transcription factors, and epigenetic controls, participating in the subsequent differentiation and maturation of precursor cells. Given the prevalent occurrence of osteoporosis, obesity, and related metabolic disorders, a comprehensive understanding of the regulatory mechanisms balancing bone and fat metabolism is essential, with a particular focus on the fate determination of MSCs in osteogenic and adipogenic differentiation. In this review, we provide a detailed summary of how zinc finger proteins influence the osteogenic and adipogenic differentiation of MSCs through different signaling pathways, transcription factors, and epigenetic mechanisms. Additionally, we outline the regulatory mechanisms of ZFPs in controlling osteogenic and adipogenic differentiation based on various stages of MSC differentiation.
Collapse
Affiliation(s)
- Bolun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|