1
|
Bhadra R, Singh PK, Mahmud M. HyEpiSeiD: a hybrid convolutional neural network and gated recurrent unit model for epileptic seizure detection from electroencephalogram signals. Brain Inform 2024; 11:21. [PMID: 39167115 PMCID: PMC11339197 DOI: 10.1186/s40708-024-00234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Epileptic seizure (ES) detection is an active research area, that aims at patient-specific ES detection with high accuracy from electroencephalogram (EEG) signals. The early detection of seizure is crucial for timely medical intervention and prevention of further injuries of the patients. This work proposes a robust deep learning framework called HyEpiSeiD that extracts self-trained features from the pre-processed EEG signals using a hybrid combination of convolutional neural network followed by two gated recurrent unit layers and performs prediction based on those extracted features. The proposed HyEpiSeiD framework is evaluated on two public datasets, the UCI Epilepsy and Mendeley datasets. The proposed HyEpiSeiD model achieved 99.01% and 97.50% classification accuracy, respectively, outperforming most of the state-of-the-art methods in epilepsy detection domain.
Collapse
Affiliation(s)
- Rajdeep Bhadra
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, 700 106, Kolkata, West Bengal, India
| | - Pawan Kumar Singh
- Department of Information Technology, Jadavpur University, Jadavpur University Second Campus, Plot No. 8, Salt Lake Bypass, LB Block, Sector III, Salt Lake City, 700 106, Kolkata, West Bengal, India
- Metharath University, 99, Moo 10, Bang Toei, Sam Khok, 12160, Pathum Thani, Thailand
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Nottingham, NG11 8NS, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Nottingham, NG11 8NS, UK.
- Computing and Informatics Research Centre, Nottingham Trent University, Nottingham, NG11 8NS, UK.
| |
Collapse
|
2
|
Rahman MA, Brown DJ, Mahmud M, Harris M, Shopland N, Heym N, Sumich A, Turabee ZB, Standen B, Downes D, Xing Y, Thomas C, Haddick S, Premkumar P, Nastase S, Burton A, Lewis J. Enhancing biofeedback-driven self-guided virtual reality exposure therapy through arousal detection from multimodal data using machine learning. Brain Inform 2023; 10:14. [PMID: 37341863 DOI: 10.1186/s40708-023-00193-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/15/2023] [Indexed: 06/22/2023] Open
Abstract
Virtual reality exposure therapy (VRET) is a novel intervention technique that allows individuals to experience anxiety-evoking stimuli in a safe environment, recognise specific triggers and gradually increase their exposure to perceived threats. Public-speaking anxiety (PSA) is a prevalent form of social anxiety, characterised by stressful arousal and anxiety generated when presenting to an audience. In self-guided VRET, participants can gradually increase their tolerance to exposure and reduce anxiety-induced arousal and PSA over time. However, creating such a VR environment and determining physiological indices of anxiety-induced arousal or distress is an open challenge. Environment modelling, character creation and animation, psychological state determination and the use of machine learning (ML) models for anxiety or stress detection are equally important, and multi-disciplinary expertise is required. In this work, we have explored a series of ML models with publicly available data sets (using electroencephalogram and heart rate variability) to predict arousal states. If we can detect anxiety-induced arousal, we can trigger calming activities to allow individuals to cope with and overcome distress. Here, we discuss the means of effective selection of ML models and parameters in arousal detection. We propose a pipeline to overcome the model selection problem with different parameter settings in the context of virtual reality exposure therapy. This pipeline can be extended to other domains of interest where arousal detection is crucial. Finally, we have implemented a biofeedback framework for VRET where we successfully provided feedback as a form of heart rate and brain laterality index from our acquired multimodal data for psychological intervention to overcome anxiety.
Collapse
Affiliation(s)
- Muhammad Arifur Rahman
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - David J Brown
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
- Medical Technologies Innovation Facility, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
- Computing and Informatics Research Centre, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Matthew Harris
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Nicholas Shopland
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Nadja Heym
- School of Social Sciences, Nottingham Trent University, Shakespeare St, Nottingham, NG1 4FQ, UK
| | - Alexander Sumich
- School of Social Sciences, Nottingham Trent University, Shakespeare St, Nottingham, NG1 4FQ, UK
| | - Zakia Batool Turabee
- School of Social Sciences, Nottingham Trent University, Shakespeare St, Nottingham, NG1 4FQ, UK
| | - Bradley Standen
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - David Downes
- Nottingham School of Art & Design, Nottingham Trent University, Shakespeare St, Nottingham, NG1 4FQ, UK
| | - Yangang Xing
- School of ADBE, Nottingham Trent University, Shakespeare St, Nottingham, NG1 4FQ, UK
| | - Carolyn Thomas
- Nottingham School of Art & Design, Nottingham Trent University, Shakespeare St, Nottingham, NG1 4FQ, UK
| | - Sean Haddick
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Preethi Premkumar
- Division of Psychology, London South Bank University, London, SE1 0AA, UK
| | | | - Andrew Burton
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - James Lewis
- Department of Computer Science, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| |
Collapse
|
3
|
Hajamohideen F, Shaffi N, Mahmud M, Subramanian K, Al Sariri A, Vimbi V, Abdesselam A, for the Alzheimer’s Disease Neuroimaging Initiative. Four-way classification of Alzheimer's disease using deep Siamese convolutional neural network with triplet-loss function. Brain Inform 2023; 10:5. [PMID: 36806042 PMCID: PMC9937523 DOI: 10.1186/s40708-023-00184-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 02/19/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions, including the hippocampus causing impairment in cognition, function, and behaviour. Early diagnosis of the disease will reduce the suffering of the patients and their family members. Towards this aim, in this paper, we propose a Siamese Convolutional Neural Network (SCNN) architecture that employs the triplet-loss function for the representation of input MRI images as k-dimensional embeddings. We used both pre-trained and non-pretrained CNNs to transform images into the embedding space. These embeddings are subsequently used for the 4-way classification of Alzheimer's disease. The model efficacy was tested using the ADNI and OASIS datasets which produced an accuracy of 91.83% and 93.85%, respectively. Furthermore, obtained results are compared with similar methods proposed in the literature.
Collapse
Affiliation(s)
- Faizal Hajamohideen
- College of Computing and Information Sciences, University of Technology and Applied Sciences, Jamia Street, 311 Sohar, Sultanate of Oman
| | - Noushath Shaffi
- College of Computing and Information Sciences, University of Technology and Applied Sciences, Jamia Street, 311 Sohar, Sultanate of Oman
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, UK
- Computing and Informatics Research Centre, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, UK
| | - Karthikeyan Subramanian
- College of Computing and Information Sciences, University of Technology and Applied Sciences, Jamia Street, 311 Sohar, Sultanate of Oman
| | - Arwa Al Sariri
- College of Computing and Information Sciences, University of Technology and Applied Sciences, Jamia Street, 311 Sohar, Sultanate of Oman
| | - Viswan Vimbi
- College of Computing and Information Sciences, University of Technology and Applied Sciences, Jamia Street, 311 Sohar, Sultanate of Oman
| | - Abdelhamid Abdesselam
- Department of Computer Science, Sultan Qaboos University, 123 Muscat, Sultanate of Oman
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- College of Computing and Information Sciences, University of Technology and Applied Sciences, Jamia Street, 311 Sohar, Sultanate of Oman
- Department of Computer Science, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, UK
- Computing and Informatics Research Centre, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, UK
- Department of Computer Science, Sultan Qaboos University, 123 Muscat, Sultanate of Oman
| |
Collapse
|
4
|
Bhanot N, Ahuja J, Kidwai HI, Nayan A, Bhatti RS. A sustainable economic revival plan for post-COVID-19 using machine learning approach – a case study in developing economy context. BENCHMARKING-AN INTERNATIONAL JOURNAL 2022. [DOI: 10.1108/bij-09-2021-0564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe impact of COVID-19 has caused a recession in economies all over the world. In this context, the current study aims to analyze the prevailing economic scenario using a machine learning approach and suggest sustainable measures to recover the global economy taking the case of Make in India (MII) initiative of developing the economy as a base for the study.Design/methodology/approachA well-known topic modeling technique – Latent Dirichlet allocation (LDA) algorithm has been employed to extract useful information characterizing the existing state of selected sectors under the MII initiative alongside catalytic policies that have been implemented for the same. The textual data acts as the base of the study upon which suggestions are provided.FindingsThe findings obtained suggest that digital transformation will play a key role in concerned sectors to optimize the performance of manufacturing organizations. Additionally, inter-relationship between Key Performance Indicators for the economy's revival is crucial for effective utilization of foreign direct investment resources.Practical implicationsThe novel efforts to utilize MII initiative as a case present crucial information which can be used by policy makers and various other stakeholders across the globe to enhance decision-making and draft legislation across different sectors to empower the economy.Originality/valueThe study presents a novel approach to utilize the MII initiative by identifying important measures for crucial sectors and associated policies that have been presented by employing a text mining approach which in itself makes it unique in its contribution to research literature.
Collapse
|
5
|
Awan MAE, Waseem M, Sahito AF, Sahito AM, Khatri G, Butt MA, Ramproshad S, Mondal B, Hasan MM. Monkeypox has devastated the world; should we prepare for the outbreak of a new pandemic? Ann Med Surg (Lond) 2022; 79:104051. [PMID: 35860122 PMCID: PMC9289421 DOI: 10.1016/j.amsu.2022.104051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/12/2022] Open
Abstract
The monkeypox virus, which belongs to the orthopoxy virus family, causes fever, lethargy, headache, lymphadenopathy, myalgia, and rash, as well as various complications such as superimposed infections, sepsis, keratitis, encephalitis, and bronchopneumonia. Following replication at the site of injection, the virus often enters by the oropharynx, nasopharynx, or intradermal pathway, spreading to lymph nodes before viremia, promoting viral dissemination to other organ systems. Monkeypox cases have recently been brought to WHO's notice from 12 presently non-endemic member nations spread over three WHO regions, with 92 laboratory-confirmed cases and 28 cases of suspicion as of May 21, 2022. Monkeypox is presently endemic in the Central African Republic, the Democratic Republic of the Congo, Benin, Cameroon, Gabon, Sierra Leone, and South Sudan. Monkeypox cases have been detected all across the world, posing a challenge to healthcare infrastructure that is still recovering from the COVID-19 outbreak. Close monitoring and exact data collecting, the implementation of successful programs across the world, and public support of preventative measures are some of the strategies being used to cope with the increasing incidence of monkeypox.
Collapse
Affiliation(s)
| | - Maria Waseem
- Dow University of Health Sciences, Karachi, Pakistan
| | - Areesh Fatima Sahito
- Peoples University of Medical and Health Sciences for Women (PUMHSW), Nawabshah, Pakistan
| | | | | | - Masood Ahmed Butt
- Pir Abdul Qadir Shah Jeelani Institute of Medical Sciences, Gambat, Pakistan
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, Bangladesh
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|
6
|
MXT: A New Variant of Pyramid Vision Transformer for Multi-label Chest X-ray Image Classification. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Amini Farsani Z, Schmid VJ. Maximum Entropy Technique and Regularization Functional for Determining the Pharmacokinetic Parameters in DCE-MRI. J Digit Imaging 2022; 35:1176-1188. [PMID: 35618849 PMCID: PMC9582183 DOI: 10.1007/s10278-022-00646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 10/31/2022] Open
Abstract
This paper aims to solve the arterial input function (AIF) determination in dynamic contrast-enhanced MRI (DCE-MRI), an important linear ill-posed inverse problem, using the maximum entropy technique (MET) and regularization functionals. In addition, estimating the pharmacokinetic parameters from a DCE-MR image investigations is an urgent need to obtain the precise information about the AIF-the concentration of the contrast agent on the left ventricular blood pool measured over time. For this reason, the main idea is to show how to find a unique solution of linear system of equations generally in the form of [Formula: see text] named an ill-conditioned linear system of equations after discretization of the integral equations, which appear in different tomographic image restoration and reconstruction issues. Here, a new algorithm is described to estimate an appropriate probability distribution function for AIF according to the MET and regularization functionals for the contrast agent concentration when applying Bayesian estimation approach to estimate two different pharmacokinetic parameters. Moreover, by using the proposed approach when analyzing simulated and real datasets of the breast tumors according to pharmacokinetic factors, it indicates that using Bayesian inference-that infer the uncertainties of the computed solutions, and specific knowledge of the noise and errors-combined with the regularization functional of the maximum entropy problem, improved the convergence behavior and led to more consistent morphological and functional statistics and results. Finally, in comparison to the proposed exponential distribution based on MET and Newton's method, or Weibull distribution via the MET and teaching-learning-based optimization (MET/TLBO) in the previous studies, the family of Gamma and Erlang distributions estimated by the new algorithm are more appropriate and robust AIFs.
Collapse
Affiliation(s)
- Zahra Amini Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute of Statistics, Ludwig-Maximilian-Universität München, Ludwigstraße 33, 80539, Munich, Germany. .,Statistics Department, School of Science, Lorestan University, 68151-44316, Khorramabad, Iran.
| | - Volker J Schmid
- Bayesian Imaging and Spatial Statistics Group, Institute of Statistics, Ludwig-Maximilian-Universität München, Ludwigstraße 33, 80539, Munich, Germany
| |
Collapse
|
8
|
AlArjani A, Nasseef MT, Kamal SM, Rao BVS, Mahmud M, Uddin MS. Application of Mathematical Modeling in Prediction of COVID-19 Transmission Dynamics. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:10163-10186. [PMID: 35018276 PMCID: PMC8739391 DOI: 10.1007/s13369-021-06419-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
The entire world has been affected by the outbreak of COVID-19 since early 2020. Human carriers are largely the spreaders of this new disease, and it spreads much faster compared to previously identified coronaviruses and other flu viruses. Although vaccines have been invented and released, it will still be a challenge to overcome this disease. To save lives, it is important to better understand how the virus is transmitted from one host to another and how future areas of infection can be predicted. Recently, the second wave of infection has hit multiple countries, and governments have implemented necessary measures to tackle the spread of the virus. We investigated the three phases of COVID-19 research through a selected list of mathematical modeling articles. To take the necessary measures, it is important to understand the transmission dynamics of the disease, and mathematical modeling has been considered a proven technique in predicting such dynamics. To this end, this paper summarizes all the available mathematical models that have been used in predicting the transmission of COVID-19. A total of nine mathematical models have been thoroughly reviewed and characterized in this work, so as to understand the intrinsic properties of each model in predicting disease transmission dynamics. The application of these nine models in predicting COVID-19 transmission dynamics is presented with a case study, along with detailed comparisons of these models. Toward the end of the paper, key behavioral properties of each model, relevant challenges and future directions are discussed.
Collapse
Affiliation(s)
- Ali AlArjani
- Department of Mechanical & Industrial Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, AlKharj, 16273 Saudi Arabia
| | - Md Taufiq Nasseef
- Douglas Hospital Research Center, Department of Psychiatry, School of Medicine, McGill University, Montreal, QC Canada
| | - Sanaa M. Kamal
- Department of Internal Medicine, College of medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942 Saudi Arabia
| | - B. V. Subba Rao
- Dept of Information Technology, PVP Siddhartha Institute of Technology, Chalasani Nagar, Kanuru, Vijayawada, Andhra Pradesh 520007 India
| | - Mufti Mahmud
- Department of Computer Science, Nottingham Trent University, Clifton, Nottingham, NG11 8NS UK
- Medical Technologies Innovation Facility, Nottingham Trent University, Clifton, Nottingham, NG11 8NS UK
- Computing and Informatics Research Centre, Nottingham Trent University, Clifton, Nottingham, NG11 8NS UK
| | - Md Sharif Uddin
- Department of Mechanical & Industrial Engineering, Prince Sattam Bin Abdulaziz University, AlKharj, 16273 Saudi Arabia
- Department of Mathematics, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| |
Collapse
|
9
|
Biswas M, Tania MH, Kaiser MS, Kabir R, Mahmud M, Kemal AA. ACCU3RATE: A mobile health application rating scale based on user reviews. PLoS One 2021; 16:e0258050. [PMID: 34914718 PMCID: PMC8675707 DOI: 10.1371/journal.pone.0258050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Over the last decade, mobile health applications (mHealth App) have evolved exponentially to assess and support our health and well-being. OBJECTIVE This paper presents an Artificial Intelligence (AI)-enabled mHealth app rating tool, called ACCU3RATE, which takes multidimensional measures such as user star rating, user review and features declared by the developer to generate the rating of an app. However, currently, there is very little conceptual understanding on how user reviews affect app rating from a multi-dimensional perspective. This study applies AI-based text mining technique to develop more comprehensive understanding of user feedback based on several important factors, determining the mHealth app ratings. METHOD Based on the literature, six variables were identified that influence the mHealth app rating scale. These factors are user star rating, user text review, user interface (UI) design, functionality, security and privacy, and clinical approval. Natural Language Toolkit package is used for interpreting text and to identify the App users' sentiment. Additional considerations were accessibility, protection and privacy, UI design for people living with physical disability. Moreover, the details of clinical approval, if exists, were taken from the developer's statement. Finally, we fused all the inputs using fuzzy logic to calculate the new app rating score. RESULTS AND CONCLUSIONS ACCU3RATE concentrates on heart related Apps found in the play store and App gallery. The findings indicate the efficacy of the proposed method as opposed to the current device scale. This study has implications for both App developers and consumers who are using mHealth Apps to monitor and track their health. The performance evaluation shows that the proposed mHealth scale has shown excellent reliability as well as internal consistency of the scale, and high inter-rater reliability index. It has also been noticed that the fuzzy based rating scale, as in ACCU3RATE, matches more closely to the rating performed by experts.
Collapse
Affiliation(s)
- Milon Biswas
- Computer Science and Engineering, Bangladesh University of Business and Technology, Mirpur, Dhaka, Bangladesh
| | - Marzia Hoque Tania
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - M. Shamim Kaiser
- Institute of Information Technology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Russell Kabir
- School of Allied Health, Faculty of Health, Education, Medicine and Social Care, Chelmsford, United Kingdom
| | - Mufti Mahmud
- Department of Computer Science, Nottingham TrentUniversity, Nottingham, United Kingdom
| | - Atika Ahmad Kemal
- Management and Marketing at Essex Business School (EBS), University of Essex, Colchester, United Kingdom
| |
Collapse
|
10
|
Short-Term Prediction of COVID-19 Cases Using Machine Learning Models. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094266] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The first case in Bangladesh of the novel coronavirus disease (COVID-19) was reported on 8 March 2020, with the number of confirmed cases rapidly rising to over 175,000 by July 2020. In the absence of effective treatment, an essential tool of health policy is the modeling and forecasting of the progress of the pandemic. We, therefore, developed a cloud-based machine learning short-term forecasting model for Bangladesh, in which several regression-based machine learning models were applied to infected case data to estimate the number of COVID-19-infected people over the following seven days. This approach can accurately forecast the number of infected cases daily by training the prior 25 days sample data recorded on our web application. The outcomes of these efforts could aid the development and assessment of prevention strategies and identify factors that most affect the spread of COVID-19 infection in Bangladesh.
Collapse
|