1
|
Zhang S, Xu G, Wu J, Liu X, Fan Y, Chen J, Wallace G, Gu Q. Microphysiological Constructs and Systems: Biofabrication Tactics, Biomimetic Evaluation Approaches, and Biomedical Applications. SMALL METHODS 2024; 8:e2300685. [PMID: 37798902 DOI: 10.1002/smtd.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Indexed: 10/07/2023]
Abstract
In recent decades, microphysiological constructs and systems (MPCs and MPSs) have undergone significant development, ranging from self-organized organoids to high-throughput organ-on-a-chip platforms. Advances in biomaterials, bioinks, 3D bioprinting, micro/nanofabrication, and sensor technologies have contributed to diverse and innovative biofabrication tactics. MPCs and MPSs, particularly tissue chips relevant to absorption, distribution, metabolism, excretion, and toxicity, have demonstrated potential as precise, efficient, and economical alternatives to animal models for drug discovery and personalized medicine. However, current approaches mainly focus on the in vitro recapitulation of the human anatomical structure and physiological-biochemical indices at a single or a few simple levels. This review highlights the recent remarkable progress in MPC and MPS models and their applications. The challenges that must be addressed to assess the reliability, quantify the techniques, and utilize the fidelity of the models are also discussed.
Collapse
Affiliation(s)
- Shuyu Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guoshi Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Juan Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| | - Xiao Liu
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine/Department of Fetal Medicine and Prenatal Diagnosis/BioResource Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jun Chen
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Gordon Wallace
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Chaoyang District, Beijing, 100101, China
- University of Chinese Academy of Sciences, Huairou District, Beijing, 100049, China
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Novel therapies for damaged and diseased bone are being developed in a preclinical testing process consisting of in vitro cell experiments followed by in vivo animal studies. The in vitro results are often not representative of the results observed in vivo. This could be caused by the complexity of the natural bone environment that is missing in vitro. Ex vivo bone explant cultures provide a model in which cells are preserved in their native three-dimensional environment. Herein, it is aimed to review the current status of bone explant culture models in relation to their potential in complementing the preclinical evaluation process with specific attention paid to the incorporation of mechanical loading within ex vivo culture systems. RECENT FINDINGS Bone explant cultures are often performed with physiologically less relevant bone, immature bone, and explants derived from rodents, which complicates translatability into clinical practice. Mature bone explants encounter difficulties with maintaining viability, especially in static culture. The integration of mechanical stimuli was able to extend the lifespan of explants and to induce new bone formation. Bone explant cultures provide unique platforms for bone research and mechanical loading was demonstrated to be an important component in achieving osteogenesis ex vivo. However, more research is needed to establish a representative, reliable, and reproducible bone explant culture system that includes both components of bone remodeling, i.e., formation and resorption, in order to bridge the gap between in vitro and in vivo research in preclinical testing.
Collapse
Affiliation(s)
- E E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
3
|
Rodrigues RO, Sousa PC, Gaspar J, Bañobre-López M, Lima R, Minas G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003517. [PMID: 33236819 DOI: 10.1002/smll.202003517] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Despite the progress achieved in nanomedicine during the last decade, the translation of new nanotechnology-based therapeutic systems into clinical applications has been slow, especially due to the lack of robust preclinical tissue culture platforms able to mimic the in vivo conditions found in the human body and to predict the performance and biotoxicity of the developed nanomaterials. Organ-on-a-chip (OoC) platforms are novel microfluidic tools that mimic complex human organ functions at the microscale level. These integrated microfluidic networks, with 3D tissue engineered models, have been shown high potential to reduce the discrepancies between the results derived from preclinical and clinical trials. However, there are many challenges that still need to be addressed, such as the integration of biosensor modules for long-time monitoring of different physicochemical and biochemical parameters. In this review, recent advances on OoC platforms, particularly on the preclinical validation of nanomaterials designed for cancer, as well as the current challenges and possible future directions for an end-use perspective are discussed.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Patrícia C Sousa
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - João Gaspar
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Rui Lima
- Transport Phenomena Research Center (CEFT), Faculdade de Engenharia da Universidade do Porto (FEUP), R. Dr. Roberto Frias, Porto, 4200-465, Portugal
- Mechanical Engineering and Resource Sustainability Center (MEtRICs), Mechanical Engineering Department, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| |
Collapse
|
4
|
Establishment and validation of an in vitro co-culture model for oral cell lines using human PBMC-derived osteoclasts, osteoblasts, fibroblasts and keratinocytes. Sci Rep 2020; 10:16861. [PMID: 33033302 PMCID: PMC7544897 DOI: 10.1038/s41598-020-73941-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Indirect co-culture models with osteoclasts including oral cell lines may be influenced by M-CSF and RANKL in the common cell medium. Therefore, we investigated the viability and proliferation of osteoblasts (OB), fibroblasts (FB) and oral keratinocytes (OK) under stratified medium modification and assessed the differentiation of osteoclasts in each co-culture. The impact of M-CSF and RANKL in the common OC co-culture was assessed for OB, FB and OK via MTT assay via DAPI control. The multinuclearity and function of OC were evaluated by light microscopy, DAPI staining, resorption assay and FACS analysis. The PBMC showed the highest differentiation into OC after an incubation period of 7 days. Furthermore, co-culture with OB enhanced the number of differentiated multinucleated OC in comparison with monoculture, whereas co-culture with OK decreased PBMC multinuclearity and OC differentiation. FB did not influence the number of differentiated OC in a co-culture. RANKL and M-CSF reduction had no impact on OC differentiation in co-culture with FB or OB, whereas this medium modification for OK attenuated PBMC multinuclearity and OC differentiation in all approaches. Supplementation of RANKL and M-CSF can be modified for a co-culture of PBMC with FB or OB without disturbing OC differentiation. Thus, pathogenic processes of bone remodelling involving OB, OC, FB and OK in the oral cavity can be investigated thoroughly.
Collapse
|
5
|
Casey VJ, Martin C, Curtin P, Buckley K, McNamara LM. Comparison of Surgical Smoke Generated During Electrosurgery with Aerosolized Particulates from Ultrasonic and High-Speed Cutting. Ann Biomed Eng 2020; 49:560-572. [PMID: 32770304 PMCID: PMC7413221 DOI: 10.1007/s10439-020-02587-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022]
Abstract
“Surgical smoke” is an airborne by-product of electrosurgery comprised of vapour and suspended particles. Although concerns exist that exposure may be harmful, there is a poor understanding of the smoke in terms of particle size, morphology, composition and biological viability. Notably, it is not known how the biological tissue source and cutting method influence the smoke. The objective of this study was to develop a collection method for airborne by-product from surgical cutting. This would enable comprehensive analyses of the particulate burden, composition and biological viability. The method was applied to compare the electrosurgical smoke generated (in the absence of any evacuation mechanism) with the aerosolized/airborne by-products generated by ultrasonic and high-speed cutting, from bone and liver tissue cutting. We report a wide range of particle sizes (0.93–806.31 μm for bone, 0.05–1040.43 μm for liver) with 50% of the particles being <2.72 μm (~PM2.5) and 90% being <10 μm (PM10). EDX and biochemical analysis reveal components of biological cells and cellular metabolic activity in particulate from liver tissue cut by electrosurgery and ultrasonic cutting. We show for the first time however that bone saws and ultrasonic cutting do not liberate viable cells from bone.
Collapse
Affiliation(s)
- Vincent J Casey
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland Galway, Galway, Ireland.,CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Cian Martin
- Stryker, Instruments Innovation Centre, Carrigtwohill, Cork, Ireland
| | - Peter Curtin
- Stryker, Instruments Innovation Centre, Carrigtwohill, Cork, Ireland
| | - Kevin Buckley
- Stryker, Instruments Innovation Centre, Carrigtwohill, Cork, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, National University of Ireland Galway, Galway, Ireland. .,CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
6
|
Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res 2020; 8:23. [PMID: 32550039 PMCID: PMC7280204 DOI: 10.1038/s41413-020-0099-y] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Osteocytes, the most abundant and long-lived cells in bone, are the master regulators of bone remodeling. In addition to their functions in endocrine regulation and calcium and phosphate metabolism, osteocytes are the major responsive cells in force adaptation due to mechanical stimulation. Mechanically induced bone formation and adaptation, disuse-induced bone loss and skeletal fragility are mediated by osteocytes, which sense local mechanical cues and respond to these cues in both direct and indirect ways. The mechanotransduction process in osteocytes is a complex but exquisite regulatory process between cells and their environment, between neighboring cells, and between different functional mechanosensors in individual cells. Over the past two decades, great efforts have focused on finding various mechanosensors in osteocytes that transmit extracellular mechanical signals into osteocytes and regulate responsive gene expression. The osteocyte cytoskeleton, dendritic processes, Integrin-based focal adhesions, connexin-based intercellular junctions, primary cilium, ion channels, and extracellular matrix are the major mechanosensors in osteocytes reported so far with evidence from both in vitro and in vitro studies. This review aims to give a systematic introduction to osteocyte mechanobiology, provide details of osteocyte mechanosensors, and discuss the roles of osteocyte mechanosensitive signaling pathways in the regulation of bone homeostasis.
Collapse
Affiliation(s)
- Lei Qin
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Wen Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Huiling Cao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
7
|
Jiang L, Ivich F, Tahsin S, Tran M, Frank SB, Miranti CK, Zohar Y. Human stroma and epithelium co-culture in a microfluidic model of a human prostate gland. BIOMICROFLUIDICS 2019; 13:064116. [PMID: 31768202 PMCID: PMC6867939 DOI: 10.1063/1.5126714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/11/2019] [Indexed: 05/10/2023]
Abstract
The prostate is a walnut-sized gland that surrounds the urethra of males at the base of the bladder comprising a muscular portion, which controls the release of urine, and a glandular portion, which secretes fluids that nourish and protect sperms. Here, we report the development of a microfluidic-based model of a human prostate gland. The polydimethylsiloxane (PDMS) microfluidic device, consisting of two stacked microchannels separated by a polyester porous membrane, enables long-term in vitro cocultivation of human epithelial and stromal cells. The porous separation membrane provides an anchoring scaffold for long-term culturing of the two cell types on its opposite surfaces allowing paracrine signaling but not cell crossing between the two channels. The microfluidic device is transparent enabling high resolution bright-field and fluorescence imaging. Within this coculture model of a human epithelium/stroma interface, we simulated the functional development of the in vivo human prostate gland. We observed the successful differentiation of basal epithelial cells into luminal secretory cells determined biochemically by immunostaining with known differentiation biomarkers, particularly androgen receptor expression. We also observed morphological changes where glandlike mounds appeared with relatively empty centers reminiscent of prostatic glandular acini structures. This prostate-on-a-chip will facilitate the direct evaluation of paracrine and endocrine cross talk between these two cell types as well as studies associated with normal vs disease-related events such as prostate cancer.
Collapse
Affiliation(s)
- L. Jiang
- Department of Aerospace & Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, USA
- Author to whom correspondence should be addressed:
| | - F. Ivich
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | | | - M. Tran
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | |
Collapse
|
8
|
Haugen S, He J, Sundaresan A, Stunes AK, Aasarød KM, Tiainen H, Syversen U, Skallerud B, Reseland JE. Adiponectin Reduces Bone Stiffness: Verified in a Three-Dimensional Artificial Human Bone Model In Vitro. Front Endocrinol (Lausanne) 2018; 9:236. [PMID: 29867768 PMCID: PMC5960720 DOI: 10.3389/fendo.2018.00236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/25/2018] [Indexed: 01/31/2023] Open
Abstract
Primary human osteoblasts and osteoclasts incubated in a rotating coculture system without any scaffolding material, form bone-like tissue that may be used to evaluate effects of various compounds on mechanical strength. Circulating adiponectin has been found to be negatively associated with BMD and strength and was therefore assessed in this system. Osteospheres of human osteoblasts and osteoclasts were generated with and without adiponectin. The osteospheres were scanned using micro-computed tomography, the mechanical properties were tested by flat punch compression using nanoindentation equipment, and the cellular morphology characterized by microscopy. The association between autologously produced adiponectin and biomechanical properties was further evaluated by quantitation of adiponectin levels using quantitative polymerase chain reaction (qPCR) and immunoassays, and identification of stiffness by bending test of rat femurs. The molecular mechanisms were examined in vitro using human bone cells. Mechanical testing revealed that adiponectin induced a more compliant osteosphere compared with control. The osteospheres had a round, lobulated appearance with morphologically different areas; inner regions containing few cells embedded in a bone-like material surrounded by an external area with a higher cell quantity. The expression of adiponectin was found to correlate positively to ultimate bending moment and ultimate energy absorption and deflection, on the other hand, it correlated negatively to bending stiffness, indicating autocrine and/or paracrine effects of adiponectin in bone. Adiponectin enhanced proliferation and expression of collagen, leptin, and tumor necrosis factor-alpha in osteoblasts and stimulated proliferation, but not the functional activity of osteoclasts. Our results indicate that both administration of adiponectin during osteosphere production and in situ elevated levels of adiponectin in rat femurs, reduced stiffness of the bone tissues. An increase in undifferentiated cells and extracellular matrix proteins, such as collagen, may explain the reduced bone stiffness seen in the osteospheres treated with adiponectin.
Collapse
Affiliation(s)
- Sigrid Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Jianying He
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Alamelu Sundaresan
- Department of Biology, Texas Southern University, Houston, TX, United States
| | - Astrid Kamilla Stunes
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- St. Olav’s University Hospital, Trondheim, Norway
| | - Kristin Matre Aasarød
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- St. Olav’s University Hospital, Trondheim, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Unni Syversen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Endocrinology, St. Olav’s University Hospital, Trondheim, Norway
| | - Bjørn Skallerud
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, Oslo, Norway
- *Correspondence: Janne Elin Reseland,
| |
Collapse
|
9
|
Abstract
Current in vitro gut models lack physiological relevance, and various approaches have been taken to improve current cell culture models. For example, mimicking the three-dimensional (3D) tissue structure or fluidic environment has been shown to improve the physiological function of gut cells. Here, we incorporated a collagen scaffold that mimics the human intestinal villi into a microfluidic device, thus providing cells with both 3D tissue structure and fluidic shear. We hypothesized that the combined effect of 3D structure and fluidic shear may provide cells with adequate stimulus to induce further differentiation and improve physiological relevance. The physiological function of our '3D gut chip' was assessed by measuring the absorptive permeability of the gut epithelium and activity of representative enzymes, as well as morphological evaluation. Our results suggest that the combination of fluidic stimulus and 3D structure induces further improvement in gut functions. Our work provides insight into the effect of different tissue environment on gut cells.
Collapse
|
10
|
Abstract
Angiogenesis plays an important role not only in the growth and regeneration of tissues in humans but also in pathological conditions such as inflammation, degenerative disease and the formation of tumors. Angiogenesis is also vital in thick engineered tissues and constructs, such as those for the heart and bone, as these can face difficulties in successful implantation if they are insufficiently vascularized or unable to connect to the host vasculature. Considerable research has been carried out on angiogenic processes using a variety of approaches. Pathological angiogenesis has been analyzed at the cellular level through investigation of cell migration and interactions, modeling tissue level interactions between engineered blood vessels and whole organs, and elucidating signaling pathways involved in different angiogenic stimuli. Approaches to regenerative angiogenesis in ischemic tissues or wound repair focus on the vascularization of tissues, which can be broadly classified into two categories: scaffolds to direct and facilitate tissue growth and targeted delivery of genes, cells, growth factors or drugs that promote the regeneration. With technological advancement, models have been designed and fabricated to recapitulate the innate microenvironment. Moreover, engineered constructs provide not only a scaffold for tissue ingrowth but a reservoir of agents that can be controllably released for therapeutic purposes. This review summarizes the current approaches for modeling pathological and regenerative angiogenesis in the context of micro-/nanotechnology and seeks to bridge these two seemingly distant aspects of angiogenesis. The ultimate aim is to provide insights and advances from various models in the realm of angiogenesis studies that can be applied to clinical situations.
Collapse
Affiliation(s)
- Li-Jiun Chen
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| | | |
Collapse
|
11
|
Moradi Haghgoo J, Arabi SR, Hosseinipanah SM, Solgi G, Rastegarfard N, Farhadian M. Comparison of the effect of three autogenous bone harvesting methods on cell viability in rabbits. J Dent Res Dent Clin Dent Prospects 2017; 11:73-77. [PMID: 28748046 PMCID: PMC5519996 DOI: 10.15171/joddd.2017.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 06/18/2017] [Indexed: 11/09/2022] Open
Abstract
Background. This study was designed to compare the viability of autogenous bone grafts, harvested using different methods, in order to determine the best harvesting technique with respect to more viable cells.
Methods. In this animal experimental study, three harvesting methods, including manual instrument (chisel), rotary device and piezosurgery, were used for harvesting bone grafts from the lateral body of the mandible on the left and right sides of 10 rabbits. In each group, 20 bone samples were collected and their viability was assessed using MTS kit. Statistical analyses, including ANOVA and post hoc Tukey tests, were used for evaluating significant differences between the groups.
Results. One-way ANOVA showed significant differences between all the groups (P=0.000). Data analysis using post hoc Tukey tests indicated that manual instrument and piezosurgery had no significant differences with regard to cell viability (P=0.749) and the cell viability in both groups was higher than that with the use of a rotary instrument (P=0.000).
Conclusion. Autogenous bone grafts harvested with a manual instrument and piezosurgery had more viable cells in comparison to the bone chips harvested with a rotary device.
Collapse
Affiliation(s)
- Janet Moradi Haghgoo
- Department of Periodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Reza Arabi
- Department of Periodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Ghasem Solgi
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Neda Rastegarfard
- Department of Periodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Farhadian
- Modeling of Noncommunicable Diseases Research Center, Department of Biostatistics, Faculty of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Penolazzi L, Lolli A, Sardelli L, Angelozzi M, Lambertini E, Trombelli L, Ciarpella F, Vecchiatini R, Piva R. Establishment of a 3D-dynamic osteoblasts-osteoclasts co-culture model to simulate the jawbone microenvironment in vitro. Life Sci 2016; 152:82-93. [PMID: 27015789 DOI: 10.1016/j.lfs.2016.03.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/11/2016] [Accepted: 03/01/2016] [Indexed: 12/25/2022]
Abstract
AIMS We aimed to establish a 3D osteoblasts/osteoclasts co-culture system requiring limited amounts of human primary cells and useful as platform to 1. recapitulate an "oral bone microenvironment" in healthy or pathological condition, and 2. produce potential implantable cell constructs for regeneration of jawbone which can be negatively affected by bisphosphonates (BPs). MAIN METHODS Osteoblasts from normal bone chips (hOBs) or from jawbone of patients taking BPs (hnOBs) were co-cultured with monocytes (hMCs) either in static (3D-C) or dynamic (3D-DyC) condition using the RCCS-4™ bioreactor for 3weeks. Cell aggregates were characterized for viability, histological features and specific osteoclastic and osteogenic markers. KEY FINDINGS In all tested conditions hOBs supported the formation of mature osteoclasts (hOCs), without differentiating agents or exogenous scaffolds. 3D-DyC condition associated with a ground based condition (Xg) rather than modeled microgravity (μXg) produced aggregates with high level of osteogenic markers including Osteopontin (OPN), Osterix (OSX), Runx2 and appreciable bone mineral matrix. hnOBs co-cultured with hMCs in 3D-Dyc/Xg condition generated OPN and mineral matrix positive aggregates. SIGNIFICANCE We optimized a 3D co-culture system with a limited amount of cells preserving viability and functionality of bone cellular components and generating bone-like aggregates also by using cells from jawbone necrotic tissue. The feasibility to obtain from poor-quality bone sites viable osteoblasts able to form aggregates when co-cultured with hMCs, allows to study the development of autologous implantable constructs to overcome jawbone deficiency in patients affected by MRONJ (Medication-Related Osteonecrosis of the Jaws).
Collapse
Affiliation(s)
- Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | - Andrea Lolli
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | - Luca Sardelli
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | - Marco Angelozzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | - Leonardo Trombelli
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | - Francesca Ciarpella
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | - Renata Vecchiatini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Italy.
| |
Collapse
|