1
|
Liu Q, Chen YY, Hong DW, Lin JH, Wu XM, Yu H. Protecting primary teeth from dental erosion through bioactive glass. J Dent 2024; 147:105109. [PMID: 38849053 DOI: 10.1016/j.jdent.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
OBJECTIVES The present study aimed to evaluate the effectiveness of bioactive glass (BAG) in preventing dental erosion in primary teeth. METHODS Enamel and dentin specimens (2 × 2 × 2 mm) were obtained from extracted primary teeth, which were randomly divided into the following groups based on the pretreatments (n = 12): DW (deionized water), NaF (2 % sodium fluoride), 2BAG (2 % BAG), 4BAG (4 % BAG), 6BAG (6 % BAG), and 8BAG (8 % BAG). The specimens were immersed in the respective solutions for 2 min and subjected to in vitro erosive challenges (4 × 5 min/d) for 5 d. The erosive enamel loss (EEL), erosive dentin loss (EDL), and the thickness of the demineralized organic matrix (DOM) were measured using a contact profilometer. The surface microhardness (SMH) was measured, and the percentage of SMH loss (%SMHL) was calculated. The surface morphology and mineral composition were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), respectively. RESULTS After the erosive challenges, the EEL, EDL, and%SMHL of the 2BAG, 4BAG, 6BAG, and 8BAG groups significantly reduced, with the greatest reduction was observed in the 6BAG (EEL: 6.5 ± 0.2 μm;%SMHL in enamel: 12.8 ± 2.6; EDL: 7.9 ± 0.3 μm; %SMHL in dentin: 22.1 ± 2.7) and 8BAG groups (EEL: 6.4 ± 0.4 μm;%SMHL in enamel: 11.0 ± 1.9; EDL: 7.8 ± 0.5 μm; %SMHL in dentin: 22.0 ± 2.5) (P < 0.05). With increasing BAG concentrations, the number of surface deposits containing Ca, P, and Si increased. CONCLUSIONS 6BAG was the most effective for preventing dental erosion in primary teeth and showed a particularly strong potential for dentin erosion prevention. CLINICAL SIGNIFICANCE Bioactive glass, especially at a 6 % concentration, has proven effective in reducing erosive tooth wear and surface microhardness loss while also protecting demineralized organic matrix in primary dentin.
Collapse
Affiliation(s)
- Qiong Liu
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fujian Medical University, Fuzhou, China; Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China; Department of Pediatric Dentistry, School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Ying Chen
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fujian Medical University, Fuzhou, China; Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Deng-Wei Hong
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fujian Medical University, Fuzhou, China; Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Jing-Hui Lin
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fujian Medical University, Fuzhou, China; Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Xiao-Ming Wu
- Department of Pediatric Dentistry, School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hao Yu
- School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fujian Medical University, Fuzhou, China; Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China; Department of Applied Prosthodontics Graduate School of Biomedical Sciences, Nagasaki University, Japan.
| |
Collapse
|
2
|
Bian C, Guo Y, Zhu M, Liu M, Xie X, Weir MD, Oates TW, Masri R, Xu HHK, Zhang K, Bai Y, Zhang N. New generation of orthodontic devices and materials with bioactive capacities to improve enamel demineralization. J Dent 2024; 142:104844. [PMID: 38253119 DOI: 10.1016/j.jdent.2024.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE The article reviewed novel orthodontic devices and materials with bioactive capacities in recent years and elaborated on their properties, aiming to provide guidance and reference for future scientific research and clinical applications. DATA, SOURCES AND STUDY SELECTION Researches on remineralization, protein repellent, antimicrobial activity and multifunctional novel bioactive orthodontic devices and materials were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS The new generation of orthodontic devices and materials with bioactive capacities has broad application prospects. However, most of the current studies are limited to in vitro studies and cannot explore the true effects of various bioactive devices and materials applied in oral environments. More research, especially in vivo researches, is needed to assist in clinical application. CLINICAL SIGNIFICANCE Enamel demineralization (ED) is a common complication in orthodontic treatments. Prolonged ED can lead to dental caries, impacting both the aesthetics and health of teeth. It is of great significance to develop antibacterial orthodontic devices and materials that can inhibit bacterial accumulation and prevent ED. However, materials with only preventive effect may fall short of addressing actual needs. Hence, the development of novel bioactive orthodontic materials with remineralizing abilities is imperative. The article reviewed the recent advancements in bioactive orthodontic devices and materials, offering guidance and serving as a reference for future scientific research and clinical applications.
Collapse
Affiliation(s)
- Ce Bian
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yiman Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Mengyao Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Miao Liu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
3
|
Palandi SDS, Kury M, Cavalli V. Influence of violet LED and fluoride-containing carbamide peroxide bleaching gels on early-stage eroded/abraded teeth. Photodiagnosis Photodyn Ther 2023; 42:103568. [PMID: 37059164 DOI: 10.1016/j.pdpdt.2023.103568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE This study evaluated enamel with early-stage erosion/abrasion following bleaching with 20% and 45% carbamide peroxide (CP) gels containing fluoride (F) and irradiated with violet LED (LED). METHODS Enamel blocks were immersed in 1% citric acid (5 min) and artificial saliva (120 min) three times to produce early-stage enamel erosion. Simulated toothbrushing was performed only after the first saliva immersion, to provoke enamel abrasion. The erosive/abraded enamel samples were submitted to (n=10): LED/CP20, CP20, LED/CP20_F, CP20_F, LED/CP45, CP45, LED/CP45_F, CP45_F, LED, and control (without treatment). The pH of the gels was assessed, and color (ΔE00) and whiteness index (ΔWID) changes were calculated after cycling (T1), and 7 days from bleaching (T2). Enamel surface roughness average (Ra) and Knoop microhardness (kg/mm2, %SHR) were evaluated at baseline (T0) at T1 and T2. Scanning electron microscopy evaluated the enamel surface morphology at T2. RESULTS The gels' pH was neutral and CP20 and CP45 exhibited no differences in ΔE00 and ΔWID (p>0.05) but LED increased these parameters for CP20_F and CP45. Erosion/abrasion significantly decreased mean kg/mm2, and the LED group was the only one not increasing microhardness after bleaching (p>0.05). None of the groups fully recovered the initial microhardness. All groups exhibited %SHR similar to the control (p>0.05) and the increase in Ra was detected only after erosion/abrasion. CP20_F groups exhibited a more preserved enamel morphology. CONCLUSION Light irradiation combined with low-concentrated CP gel promoted a bleaching effect comparable to the high-concentrated CP. The bleaching protocols did not adversely impact the surface of early-stage eroded/abraded enamel.
Collapse
Affiliation(s)
- Samuel da Silva Palandi
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - Matheus Kury
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| | - Vanessa Cavalli
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
| |
Collapse
|
4
|
Zhang R, Qi J, Gong M, Liu Q, Zhou H, Wang J, Mei Y. Effects of 45S5 bioactive glass on the remineralization of early carious lesions in deciduous teeth: an in vitro study. BMC Oral Health 2021; 21:576. [PMID: 34772397 PMCID: PMC8588588 DOI: 10.1186/s12903-021-01931-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background Early childhood caries has been designated as a serious public health problem. The traditional restoration method is very challenging, especially in uncooperative patients. Non-invasive therapy, like remineralization agents, which have been developed to reverse the demineralization progress at the early stage of caries, may be a better choice. This study aimed to evaluate the remineralization efficacy of different concentrations of 45S5 bioactive glass (BAG) on artifical carious lesions of deciduous enamel.
Methods 65 caries-like enamel lesions of the deciduous teeth were assigned to 5 groups (n = 13) and transported to a 14 days pH-cycling: Group A: 2%BAG, Group B: 4%BAG, Group C: 6%BAG, Group D: 8%BAG, and Group E: deionized water (DDW, negative control). 8 sound (Group F) and 8 demineralized teeth (Group G) were prepared for contrast. The recovery power of mechanical property was evaluated by Vickers hardness test through the recovery of enamel microhardness (%REMH). Surface morphology, mass fraction of Ca and P ions, and Ca/P atomic ratio were analyzed by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (EDX). Moreover, Fourier transform infrared spectroscopy equipped with attenuated total reflectance was used to identify the chemical structure of newly formed compounds. Results % REMH were (42.65 ± 1.35), (52.59 ± 2.96), (57.40 ± 1.72), (52.91 ± 2.55), (12.46 ± 2.81) in 2%BAG, 4%BAG, 6%BAG, 8%BAG, and DDW groups respectively. Micro-spherical particles were deposited in all BAG groups and 6% BAG showed the densest and most uniform surface. EDX analysis identified significantly higher Ca(wt%) and P(wt%) in four BAG groups than in the demineralized group (p < 0.005), while 6% BAG showed the highest mineral gain efficacy. The infrared spectrum demonstrated that newly mineralized crystals were consisted of type-B hydroxycarbonate apatite. Conclusion BAG possessed a promising remineralization effect on artificial lesions in deciduous enamel by recovering enamel surface mechanical property, morphology and chemical elements. Among them, 6% BAG performed the greatest overall efficacy. Acting as a new caries-arresting biomaterial, 45S5 BAG has the potential to facilitate the adaptation of better carious prevention strategies in children.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road 1st, Nanjing, 210029, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Jianyan Qi
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road 1st, Nanjing, 210029, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Min Gong
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road 1st, Nanjing, 210029, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Qian Liu
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road 1st, Nanjing, 210029, China
| | - Hongyan Zhou
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road 1st, Nanjing, 210029, China
| | - Jue Wang
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road 1st, Nanjing, 210029, China
| | - Yufeng Mei
- Department of Pediatric Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Shanghai Road 1st, Nanjing, 210029, China.
| |
Collapse
|