1
|
Wang L, Li T, Gu R, Feng C. Large-scale meta-analyses and network analyses of neural substrates underlying human escalated aggression. Neuroimage 2024; 299:120824. [PMID: 39214437 DOI: 10.1016/j.neuroimage.2024.120824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Escalated aggression represents a frequent and severe form of violence, sometimes manifesting as antisocial behavior. Driven by the pressures of modern life, escalated aggression is of particular concern due to its rising prevalence and its destructive impact on both individual well-being and socioeconomic stability. However, a consistent neural circuitry underpinning it remains to be definitively identified. Here, we addressed this issue by comparing brain alterations between individuals with escalated aggression and those without such behavioral manifestations. We first conducted a meta-analysis to synthesize previous neuroimaging studies on functional and structural alterations of escalated aggression (325 experiments, 2997 foci, 16,529 subjects). Following-up network and functional decoding analyses were conducted to provide quantitative characterizations of the identified brain regions. Our results revealed that brain regions constantly involved in escalated aggression were localized in the subcortical network (amygdala and lateral orbitofrontal cortex) associated with emotion processing, the default mode network (dorsal medial prefrontal cortex and middle temporal gyrus) associated with mentalizing, and the salience network (anterior cingulate cortex and anterior insula) associated with cognitive control. These findings were further supported by additional meta-analyses on emotion processing, mentalizing, and cognitive control, all of which showed conjunction with the brain regions identified in the escalated aggression. Together, these findings advance the understanding of the risk biomarkers of escalated aggressive populations and refine theoretical models of human aggression.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China; Normal College, Hubei Center for Brain and Mental Health Research, Jingchu University of Technology, Jingmen, China
| | - Ting Li
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
2
|
Lu F, Guo Y, Luo W, Yu Y, Zhao Y, Chen J, Cai X, Shen C, Wang X, He J, Yang G, Gao Q, He Z, Zhou J. Disrupted functional networks within white-matter served as neural features in adolescent patients with conduct disorder. Behav Brain Res 2023; 447:114422. [PMID: 37030546 DOI: 10.1016/j.bbr.2023.114422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/17/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Conduct disorder (CD) has been conceptualized as a psychiatric disorder associated with white-matter (WM) structural abnormalities. Although diffusion tensor imaging could identify WM structural architecture changes, it cannot characterize functional connectivity (FC) within WM. Few studies have focused on disentangling the WM dysfunctions in CD patients by using functional magnetic resonance imaging (fMRI). METHODS The resting-state fMRI data were first obtained from both adolescent CD and typically developing (TD) controls. A voxel-based clustering analysis was utilized to identify the large-scale WM FC networks. Then, we examined the disrupted WM network features in CD, and further investigated whether these features could predict the impulsive symptoms in CD using support vector regression prediction model. RESULTS We identified 11 WM functional networks. Compared with TDs, CD patients showed increased FCs between occipital network (ON) and superior temporal network (STN), between orbitofrontal network (OFN) and corona radiate network (CRN), as well as between deep network and CRN. Further, the disrupted FCs between ON and STN and between OFN and CRN were significantly negatively associated with non-planning impulsivity scores in CD. Moreover, the disrupted WM networks could be served as features to predict the motor impulsivity scores in CD. CONCLUSIONS Our results provided further support on the existence of WM functional networks and could extended our knowledge about the WM functional abnormalities related with emotional and perception processing in CD patients from the view of WM dysfunction.
Collapse
|
3
|
Gong P, Zhang J, Liu J, He L, Guo W. Bright side of the MAOA-uVNTR on trait and situational forgiveness. Psychoneuroendocrinology 2023; 151:106057. [PMID: 36801655 DOI: 10.1016/j.psyneuen.2023.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
The stress-and-coping theory of forgiveness posits that forgiveness and aggression are alternative ways of coping with stress of interpersonal offences. Inspired by the link between aggression and MAOA-uVNTR (a genetic variant involving in catabolism of monoamines), we investigated the relationship between this variant and forgiveness with two studies. Study 1 examined the relationship between the MAOA-uVNTR and trait forgiveness in students, and study 2 examined the effect of this variant on third-party forgiveness in response to situational offences in male inmates. The results showed that the MAOA-H (a high activity allele) was associated with higher trait forgiveness in male students and greater third-party forgiveness to accidentally committed harm and attempted but failed harm in male inmates than the MAOA-L. These findings highlight the bright side of MAOA-uVNTR on trait and situational forgiveness.
Collapse
Affiliation(s)
- Pingyuan Gong
- College of Life Science, Northwest University, Xi'an 710069, China; College of Medicine, Northwest University, Xi'an 710069, China; Institute of Population and Health, Northwest University, Xi'an 710069, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, China.
| | - Jieting Zhang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Jinting Liu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - LinLin He
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Wenxuan Guo
- College of Life Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
4
|
Lu F, Zhao Y, He Z, Ma X, Yao X, Liu P, Wang X, Yang G, Zhou J. Altered dynamic regional homogeneity in patients with conduct disorder. Neuropsychologia 2021; 157:107865. [PMID: 33894243 DOI: 10.1016/j.neuropsychologia.2021.107865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/23/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Conduct disorder (CD) is a psychiatric condition characterized by severe aggressive and antisocial behaviors. Prior neuroimaging work reported that CD is associated with abnormal resting-state local intrinsic brain activity (IBA). However, few studies detected the time-varying brain activity patterns in CD. In this study, eighteen adolescent patients with CD and 18 typically developing controls underwent resting-state functional magnetic resonance imaging scans. We then compared the dynamic characteristics of IBA by calculating the dynamic regional homogeneity (dReHo) through a sliding-window approach between the two groups, and the correlations between the dReHo variability and clinical symptoms in CD were further examined. Moreover, the statistical between-group differences in dReHo were selected as classification features to help distinguish CD patients from controls by adopting a linear support vector machine (SVM) classifier. CD patients showed increased dReHo variability in the left precuneus, right postcentral gyrus, right precentral gyrus, left middle cingulate gyrus, and left paracentral lobule compared to controls, and dReHo variability in the left precuneus was significantly positively associated with impulsiveness scores in CD patients. Importantly, SVM combined with the leave-one-out cross-validation method results demonstrated that 75% (p < 0.001) subjects were correctly classified with sensitivity of 61% and specificity of 89%. Our results provided the initial evidence that CD is characterized by abnormal dynamic IBA patterns, giving novel insights into the neuropathological mechanisms of CD. Further, our findings exhibited that the dReHo variability may distinguish CD patients from controls with high accuracy.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yi Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xujing Ma
- Department of Medical Technology, Cangzhou Medical College, Cangzhou, 061001, PR China
| | - Xudong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peiqu Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China
| | - Guocheng Yang
- Department of Information Science and Technology, Chengdu University of Technology, China.
| | - Jiansong Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China.
| |
Collapse
|
5
|
Lu F, Liu P, Chen H, Wang M, Xu S, Yuan Z, Wang X, Wang S, Zhou J. More than just statics: Abnormal dynamic amplitude of low-frequency fluctuation in adolescent patients with pure conduct disorder. J Psychiatr Res 2020; 131:60-68. [PMID: 32937251 DOI: 10.1016/j.jpsychires.2020.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/28/2020] [Accepted: 08/22/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND The human brain activity is inherently dynamic over time. Conventional neuroimaging studies have reported abnormalities of static intrinsic brain activity or connectivity in adolescent patients with conduct disorder (CD). Little is known, however, regarding the temporal dynamics alterations of brain activity in CD. METHODS In this study, resting-state functional magnetic resonance imaging examinations were performed on adolescent patients with pure CD and age-matched typically developing (TD) controls. The dynamic amplitude of low-frequency fluctuation (dALFF) was first measured using a sliding-window method. The temporal variability (TV) was then quantified as the variance of dALFF over time and compared between the two groups. Further, the relationships between aberrant TV of dALFF and clinical features were evaluated. RESULTS CD patients showed reduced brain dynamics (less temporal variability) in the default-mode network, frontal-limbic cortices, sensorimotor areas, and visual regions which are involved in cognitive, emotional and perceptional processes. Importantly, receiver operating characteristic curve analysis revealed that regions with altered TV of dALFF exhibited a better ability to distinguish CD patients than the results from static ALFF in the current data set. CONCLUSIONS Our findings extended previous work by providing a novel perspective on the neural mechanisms underlying adolescent patients with CD and demonstrated that the altered dynamic local brain activity may be a potential biomarker for CD diagnosis.
Collapse
Affiliation(s)
- Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peiqu Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guizhou, 550025, China
| | - Mengyun Wang
- Faculty of Health Sciences, University of Macau, Taipa, SAR, Macau, China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, SAR, Macau, China
| | - Shiyang Xu
- Faculty of Health Sciences, University of Macau, Taipa, SAR, Macau, China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, SAR, Macau, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, SAR, Macau, China; Centre for Cognitive and Brain Sciences, University of Macau, Taipa, SAR, Macau, China
| | - Xiaoping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China
| | - Song Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, China.
| | - Jiansong Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center on Mental Disorders, Changsha, 410011, Hunan, China.
| |
Collapse
|
6
|
Sun X, Ming Q, Zhong X, Dong D, Li C, Xiong G, Cheng C, Cao W, He J, Wang X, Yi J, Yao S. The MAOA Gene Influences the Neural Response to Psychosocial Stress in the Human Brain. Front Behav Neurosci 2020; 14:65. [PMID: 32499684 PMCID: PMC7243356 DOI: 10.3389/fnbeh.2020.00065] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
The stress response is regulated by many mechanisms. Monoamine oxidase A (MAOA) has been related to many mental illnesses. However, few studies have explored the relationship between MAOA and acute laboratory-induced psychosocial stress with functional magnetic resonance imaging (fMRI). In the current study, the Montreal Imaging Stress Task (MIST) and fMRI were used to investigate how MAOA influences the stress response. Increased cortisol concentrations were observed after the task; functional connectivity between the bilateral anterior hippocampus and other brain regions was reduced during stress. MAOA-H allele carriers showed greater deactivation of the right anterior hippocampus and greater cortisol response after stress than did MAOH-L allele carriers. Hippocampal deactivation may lead to disinhibition of the hypothalamic-pituitary-adrenal (HPA) axis and the initiation of stress hormone release under stress. Our results suggest that the MAOA gene regulates the stress response by influencing the right anterior hippocampus.
Collapse
Affiliation(s)
- Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Qingsen Ming
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Psychiatry, The First Affiliated Hospital of Sochoow University, Suzhou, China
| | - Xue Zhong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Chuting Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Chang Cheng
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Wanyi Cao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Jiayue He
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Jinyao Yi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| |
Collapse
|
7
|
Jiang Y, Ming Q, Gao Y, Dong D, Sun X, Zhang X, Situ W, Yao S, Rao H. Effects of BDNF Val66Met polymorphisms on brain structures and behaviors in adolescents with conduct disorder. Eur Child Adolesc Psychiatry 2020; 29:479-488. [PMID: 31264106 DOI: 10.1007/s00787-019-01363-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
Accumulating evidence suggests that neural abnormalities in conduct disorder (CD) may be subject to genetic influences, but few imaging studies have taken genetic variants into consideration. The Val66Met polymorphism of brain-derived neurotrophic factor (BDNF) has emerged as a high-interest genetic variant due to its importance in cortical maturation, and several studies have implicated its involvement in neurodevelopmental disorders. Thus, it is unclear how this polymorphism may influence brain anatomy and aberrant behaviors in CD. A total of 65 male adolescents with CD and 69 gender-, IQ- and socioeconomic status-matched healthy controls (HCs) (age range 13-17 years) were enrolled in this study. Analyses of variance (ANOVAs) were used to assess the main effects of CD diagnosis, BDNF genotype, and diagnosis-genotype interactions on brain anatomy and behaviors. We detected a significant main effect of BDNF genotype on temporal gyrification and antisocial behaviors, but not on CD symptoms. Diagnosis-genotype interactive effects were found for cortical thickness of the superior temporal and adjacent areas. These results suggest that the BDNF Val66Met polymorphism may exert its influence both on neural alterations and delinquent behaviors in CD patients. This initial evidence highlights the importance of elucidating potentially different pathways between BDNF genotype and cortical alterations or delinquent behaviors in CD patients.
Collapse
Affiliation(s)
- Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China.,Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| | - Qingsen Ming
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Xiaocui Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China
| | - Weijun Situ
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, No. 139, Middle Renmin Road, Changsha, 410011, Hunan, People's Republic of China. .,National Clinical Research Center on Psychiatry and Psychology, Changsha, Hunan, People's Republic of China. .,Medical Psychological Institute of Central South University, Changsha, Hunan, People's Republic of China.
| | - Hengyi Rao
- Center of Functional Neuroimaging, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Zhao B, Cao Y, Zhang L, Zhang W. Parenting Practices and Adolescent Effortful Control: MAOA T941G Gene Polymorphism as a Moderator. Front Psychol 2020; 11:60. [PMID: 32132943 PMCID: PMC7040235 DOI: 10.3389/fpsyg.2020.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
Effortful control (EC) plays a crucial role in psychopathology disorders. Emerging studies have paid attention to the effects of G × E interaction on EC. The present study investigated interactions between monoamine oxidase A (MAOA) T941G polymorphism with parenting practices on EC in a sample of 1,531 Chinese adolescents. The adolescents completed the Early Adolescent Temperament Questionnaire-Revised (EATQ-R) EC scale and the Parenting Style Index provided during the study to assess EC and parenting practices, respectively. MAOA T941G polymorphism exerted no effect on adolescent EC; however, results revealed that the MAOA gene interacted with parental acceptance/involvement in their associations with EC among boys. Specifically, although increased levels of parental acceptance/involvement benefited all adolescents, boys with G alleles of the MAOA gene exhibited higher sensitivity to parental acceptance/involvement, compared with T carriers; this interaction was not significant among girls. This study is the first to identify MAOA × parenting interaction on adolescent EC, further contributing to the literature in MAOA gene-EC.
Collapse
Affiliation(s)
- Bao Zhao
- Department of Psychology, Shandong Normal University, Jinan, China
| | | | | | - Wenxin Zhang
- Department of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
9
|
Cao W, Li C, Zhang J, Dong D, Sun X, Yao S, Huang B, Liu J. Regional Homogeneity Abnormalities in Early-Onset and Adolescent-Onset Conduct Disorder in Boys: A Resting-State fMRI Study. Front Hum Neurosci 2019; 13:26. [PMID: 30792633 PMCID: PMC6374554 DOI: 10.3389/fnhum.2019.00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose: Developmental taxonomic theory posits that formation of early-onset conduct disorder (EO-CD), is considered to have a neurodevelopmental etiology and have more severe psychosocial and neuropsychological dysfunction than adolescent-onset CD (AO-CD), which is thought to stem largely from social mimicry of deviant peers. The purpose of the current study was to investigate whether regional homogeneity (ReHo), denoting the spontaneous brain activity, supports developmental taxonomic theory in a resting state (rs). Materials and Methods: Rs-functional magnetic resonance imaging (fMRI) examinations were administered to 36 EO-CD patients, 32 AO-CD patients, and 30 healthy controls (HCs). All participants were male adolescents, aged between 12 and 17 years old. A one-way analysis of covariance (ANCOVA), with age and IQ as covariates, was performed to identify regions with significant group differences in ReHo values, followed by a post hoc analyses. Results: Compared with the AO-CD groups, EO-CD had higher ReHo values in the right middle/inferior frontal gyrus. Compared with the HCs, the EO-CD group exhibited lower ReHo values in the left precuneus, left middle occipital gyrus, left cerebellum posterior lobe and the right inferior parietal lobule, as well as higher ReHo values in the right middle frontal gyrus, left insula/inferior frontal gyrus, right postcentral gyrus, and the left anterior cingulate gyrus. Compared with the HCs, the AO-CD group showed lower ReHo values in the bilateral precuneus, left cerebellum posterior lobe, and the right inferior parietal lobule. Conclusion: Significant differences in ReHo were observed between the EO-CD and AO-CD groups, implying distinct neuropathological mechanisms of the two CD subtypes, consistent with developmental taxonomic theory. CD-associated abnormalities in ReHo may be related to high-order cognitive and low-level perceptual system impairments in CD.
Collapse
Affiliation(s)
- Wanyi Cao
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuting Li
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhang
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Daifeng Dong
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoqiang Sun
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuqiao Yao
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
- Medical Psychological Institute of Central South University, Changsha, China
| | - Bingsheng Huang
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
- Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Dong D, Jiang Y, Gao Y, Ming Q, Wang X, Yao S. Atypical Frontotemporal Connectivity of Cognitive Empathy in Male Adolescents With Conduct Disorder. Front Psychol 2019; 9:2778. [PMID: 30687205 PMCID: PMC6338247 DOI: 10.3389/fpsyg.2018.02778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/27/2018] [Indexed: 01/10/2023] Open
Abstract
Background: It has been suggested that adolescents with conduct disorder (CD) may have a deficit in the affective and cognitive domains empathy, but studies exploring networks within the key brain regions of affective and cognitive empathy in adolescents with CD are lacking. Methods: Functional connectivity (FC) analyses among key brain regions of the affective and cognitive empathy with resting-state functional magnetic resonance imaging (fMRI) were conducted in 30 adolescent boys with CD and 33 demographically matched healthy controls (HCs). Results: Atypical FC within the key brain regions of affective empathy was not observed in CD adolescents. However, we found that CD adolescents showed decreased frontotemporal connectivity within the key brain regions of cognitive empathy in relation to HCs, that is, the FCs between right temporoparietal junction and ventromedial prefrontal cortex as well as dorsomedial prefrontal cortex. Conclusion: These findings may provide insight into neural mechanism underlying a cognitive empathy deficiency of CD adolescents from the perspective of FC.
Collapse
Affiliation(s)
- Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
| | - Yali Jiang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
| | - Yidian Gao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
| | - Qingsen Ming
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Changsha, China.,China National Clinical Research Center on Mental Disorders (Xiangya), Changsha, China
| |
Collapse
|