1
|
Linssen R, de Smit S, Röhring Neé Neubert K, Harnisch F, Ter Heijne A. Revealing cellular (poly)sulphide storage in electrochemically active sulphide oxidising bacteria using rotating disc electrodes. Bioelectrochemistry 2024; 158:108710. [PMID: 38636364 DOI: 10.1016/j.bioelechem.2024.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Sulphide oxidising bacteria (SOB) have the potential to be used for bioelectrochemical removal, i.e. oxidation, of sulphide from waste streams. In anaerobic conditions, SOB are able to spatially separate sulphide removal and terminal electron transfer to an electrode and act as a sulphide shuttle. However, it is not fully understood how SOB anaerobically remove sulphide and store charge equivalents, and where in this process sulphur is formed. Therefore, the redox behaviour of sulphide shuttling SOB was investigated at haloalkaline conditions using a glassy carbon rotating disc electrode (RDE) and cyclic voltammetry. Voltammograms of SOB in the absence and presence of sulphide were compared to voltammograms of abiotic sulphur species solutions. Polysulphide and sulphide showed different redox behaviour, with distinct potentials for oxidation of > -0.3 V (vs. Ag/AgCl) for polysulphide and > -0.1 V for sulphide. Comparing biotic to abiotic experiments lead to the hypothesis that SOB formed polysulphides during anaerobic sulphide removal, which stayed sorbed to the cells. With this study, further steps were taken in elucidating the mechanisms of sulphide shuttling by SOB.
Collapse
Affiliation(s)
- Rikke Linssen
- Environmental Technology, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG, Building Axis z, building nr. 118, 6700 AA Wageningen, the Netherlands
| | - Sanne de Smit
- Environmental Technology, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG, Building Axis z, building nr. 118, 6700 AA Wageningen, the Netherlands
| | - Katharina Röhring Neé Neubert
- Department of Microbial Biotechnology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Falk Harnisch
- Department of Microbial Biotechnology, Helmholtz-Centre for Environmental Research GmbH - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG, Building Axis z, building nr. 118, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
2
|
Gupta S, Plugge CM, Muyzer G, Sánchez-Andrea I. Harnessing the potential of the microbial sulfur cycle for environmental biotechnology. Curr Opin Biotechnol 2024; 88:103164. [PMID: 38964081 DOI: 10.1016/j.copbio.2024.103164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
The sulfur cycle is a complex biogeochemical cycle characterized by the high variability in the oxidation states of sulfur. While sulfur is essential for life processes, certain sulfur compounds, such as hydrogen sulfide, are toxic to all life forms. Micro-organisms facilitate the sulfur cycle, playing a prominent role even in extreme environments, such as soda lakes, acid mine drainage sites, hot springs, and other harsh habitats. The activity of these micro-organisms presents unique opportunities for mitigating sulfur-based pollution and enhancing the recovery of sulfur and metals. This review highlights the application of sulfur-oxidizing and -reducing micro-organisms in environmental biotechnology through three illustrative examples. Additionally, it discusses the challenges, recent trends, and prospects associated with these applications.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands; Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute or Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands; Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute or Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Irene Sánchez-Andrea
- Environmental Science for Sustainability Department, IE Universidad, Segovia, Spain
| |
Collapse
|
3
|
Gupta S, de Rink R, Klok JBM, Muyzer G, Plugge CM. Process conditions affect microbial diversity and activity in a haloalkaline biodesulfurization system. Appl Environ Microbiol 2024; 90:e0186423. [PMID: 38078763 PMCID: PMC10807427 DOI: 10.1128/aem.01864-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2024] Open
Abstract
Biodesulfurization (BD) systems that treat sour gas employ mixtures of haloalkaliphilic sulfur-oxidizing bacteria to convert sulfide to elemental sulfur. In the past years, these systems have seen major technical innovations that have led to changes in microbial community composition. Different studies have identified and discussed the microbial communities in both traditional and improved systems. However, these studies do not identify metabolically active community members and merely focus on members' presence/absence. Therefore, their results cannot confirm the activity and role of certain bacteria in the BD system. To investigate the active community members, we determined the microbial communities of six different runs of a pilot-scale BD system. 16S rRNA gene-based amplicon sequencing was performed using both DNA and RNA. A comparison of the DNA- and RNA-based sequencing results identified the active microbes in the BD system. Statistical analyses indicated that not all the existing microbes were actively involved in the system and that microbial communities continuously evolved during the operation. At the end of the run, strains affiliated with Alkalilimnicola ehrlichii and Thioalkalivibrio sulfidiphilus were confirmed as the most active key bacteria in the BD system. This study determined that microbial communities were shaped predominantly by the combination of hydraulic retention time (HRT) and sulfide concentration in the anoxic reactor and, to a lesser extent, by other operational parameters.IMPORTANCEHaloalkaliphilic sulfur-oxidizing bacteria are integral to biodesulfurization (BD) systems and are responsible for converting sulfide to sulfur. To understand the cause of conversions occurring in the BD systems, knowing which bacteria are present and active in the systems is essential. So far, only a few studies have investigated the BD system's microbial composition, but none have identified the active microbial community. Here, we reveal the metabolically active community, their succession, and their influence on product formation.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieks de Rink
- Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands
- Paqell B.V., Utrecht, the Netherlands
| | - Johannes B. M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Mol AR, Pruim SD, de Korte M, Meuwissen DJM, van der Weijden RD, Klok JBM, Keesman KJ, Buisman CJN. Removal of small elemental sulfur particles by polysulfide formation in a sulfidic reactor. WATER RESEARCH 2022; 227:119296. [PMID: 36351351 DOI: 10.1016/j.watres.2022.119296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
For over 30 years, biological gas desulfurization under halo-alkaline conditions has been studied and optimized. This technology is currently applied in already 270 commercial installations worldwide. Sulfur particle separation, however, remains a challenge; a fraction of sulfur particles is often too small for liquid-solid separation with conventional separation technology. In this article, we report the effects of a novel sulfidic reactor, inserted in the conventional process set-up, on sulfur particle size and morphology. In the sulfidic reactor polysulfide is produced by the reaction of elemental sulfur particles and sulfide, which is again converted to elemental sulfur in a gas-lift reactor. We analyzed sulfur particles produced in continuous, long term lab-scale reactor experiments under various sulfide concentrations and sulfidic retention times. The analyses were performed with laser diffraction particle size analysis and light microscopy. These show that the smallest particles (< 1 µm) have mostly disappeared under the highest sulfide concentration (4.1 mM) and sulfidic retention time (45 min). Under these conditions also agglomeration of sulfur particles was promoted. Model calculations with thermodynamic and previously derived kinetic data on polysulfide formation confirm the experimental data on the removal of the smallest particles. Under the 'highest sulfidic pressure', the model predicts that equilibrium conditions are reached between sulfur, sulfide and polysulfide and that 100% of the sulfur particles <1 µm are dissolved by the (autocatalytic) formation of polysulfides. These experiments and modeling results demonstrate that the insertion of a novel sulfidic reactor in the conventional process set-up promotes the removal of the smallest individual sulfur particles and promotes the production of sulfur agglomerates. The novel sulfidic reactor is therefore a promising process addition with the potential to improve process operation, sulfur separation and sulfur recovery.
Collapse
Affiliation(s)
- Annemerel R Mol
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Paqell B.V, Reactorweg 301, 3542 CE Utrecht, the Netherlands.
| | - Sebastian D Pruim
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Milan de Korte
- Mathematical and Statistical Methods - Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Derek J M Meuwissen
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Renata D van der Weijden
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O: Box 1113, 8900 CC Leeuwarden, the Netherlands
| | - Johannes B M Klok
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Paqell B.V, Reactorweg 301, 3542 CE Utrecht, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O: Box 1113, 8900 CC Leeuwarden, the Netherlands
| | - Karel J Keesman
- Mathematical and Statistical Methods - Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O: Box 1113, 8900 CC Leeuwarden, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O: Box 1113, 8900 CC Leeuwarden, the Netherlands
| |
Collapse
|
5
|
de Rink R, B Lavender M, Liu D, Klok JBM, Sorokin DY, Ter Heijne A, Buisman CJN. Continuous electron shuttling by sulfide oxidizing bacteria as a novel strategy to produce electric current. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127358. [PMID: 34879559 DOI: 10.1016/j.jhazmat.2021.127358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/30/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Sulfide oxidizing bacteria (SOB) are widely applied in industry to convert toxic H2S into elemental sulfur. Haloalkaliphilic planktonic SOB can remove sulfide from solution under anaerobic conditions (SOB are 'charged'), and release electrons at an electrode (discharge of SOB). The effect of this electron shuttling on product formation and biomass growth is not known. Here, we study and demonstrate a continuous process in which SOB remove sulfide from solution in an anaerobic 'uptake chamber', and shuttle these electrons to the anode of an electrochemical cell, in the absence of dissolved sulfide. Two experiments over 31 and 41 days were performed. At a sulfide loading rate of 1.1 mmolS/day, electricity was produced continuously (3 A/m2) without dissolved sulfide in the anolyte. The main end product was sulfate (56% in experiment 1% and 78% in experiment 2), and 87% and 77% of the electrons in sulfide were recovered as electricity. It was found that the current density was dependent on the sulfide loading rate and not on the anode potential. Biological growth occurred, mainly at the anode as biofilm, in which the deltaproteobacterial genus Desulfurivibrio was dominating. Our results demonstrate a novel strategy to produce electricity from sulfide in an electrochemical system.
Collapse
Affiliation(s)
- Rieks de Rink
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Micaela B Lavender
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, The Netherlands
| | - Dandan Liu
- Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Johannes B M Klok
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, The Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology RAS, Leninskii Prospect, 33/2, 119071 Moscow, Russia; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, The Netherlands.
| | - Cees J N Buisman
- Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, The Netherlands
| |
Collapse
|
6
|
Gupta S, Plugge CM, Klok JBM, Muyzer G. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Appl Microbiol Biotechnol 2022; 106:1759-1776. [PMID: 35147744 PMCID: PMC8882115 DOI: 10.1007/s00253-022-11771-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Abstract In biodesulfurization (BD) at haloalkaline and dO2-limited conditions, sulfide-oxidizing bacteria (SOB) effectively convert sulfide into elemental sulfur that can be used in agriculture as a fertilizer and fungicide. Here we show which bacteria are present in this biotechnological process. 16S rRNA gene amplicon sequencing of biomass from ten reactors sampled in 2018 indicated the presence of 444 bacterial Amplicon Sequence Variants (ASVs). A core microbiome represented by 30 ASVs was found in all ten reactors, with Thioalkalivibrio sulfidiphilus as the most dominant species. The majority of these ASVs are phylogenetically related to bacteria previously identified in haloalkaline BD processes and in natural haloalkaline ecosystems. The source and composition of the feed gas had a great impact on the microbial community composition followed by alkalinity, sulfate, and thiosulfate concentrations. The halophilic SOB of the genus Guyparkeria (formerly known as Halothiobacillus) and heterotrophic SOB of the genus Halomonas were identified as potential indicator organisms of sulfate and thiosulfate accumulation in the BD process. Key points • Biodesulfurization (BD) reactors share a core microbiome • The source and composition of the feed gas affects the microbial composition in the BD reactors • Guyparkeria and Halomonas indicate high concentrations of sulfate and thiosulfate in the BD process Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-11771-y.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Caroline M Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.,Paqell B.V, Utrecht, The Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Babich O, Shevchenko M, Ivanova S, Pavsky V, Zimina M, Noskova S, Anohova V, Chupakhin E, Sukhikh S. Antimicrobial Potential of Microorganisms Isolated from the Bottom Sediments of Lake Baikal. Antibiotics (Basel) 2021; 10:927. [PMID: 34438977 PMCID: PMC8388859 DOI: 10.3390/antibiotics10080927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023] Open
Abstract
Extremophilic microorganisms attract researchers by their unique characteristics, primarily antagonistic ones, acquired in the process of survival in extreme natural conditions. The antimicrobial potential of the metabolites of these microorganisms is quite broad, from the food industry to therapeutic drugs. Microbial mats of Lake Baikal are a source of unique and diverse microorganisms. The study aimed to evaluate the antimicrobial activity of bacterial strains isolated from the bottom sediments of the lake. Using heterotrophic growth conditions, seven bacterial strains were isolated from samples collected in several coastal zones of Lake Baikal. Thisstudy identified both widespread strains of the genera Pseudomonas and Bacillus and rare genera Micrococcus and Acinetobacterrepresentatives. Metabolites of five strains were found to have a broad spectrum of antimicrobial activity. Four large fractions of metabolites of the isolated strains wereidentified. Two peptides of the isolated fractions of metabolites (one is produced by microorganisms of all five isolated strains, another-only by Pseudomonas putida) are low molecular weight oligopeptides. These peptides were proved to be bacteriocins.
Collapse
Affiliation(s)
- Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Margarita Shevchenko
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, 650043 Kemerovo, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia;
| | - Valery Pavsky
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street, 6, 650043 Kemerovo, Russia;
| | - Maria Zimina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Svetlana Noskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Veronika Anohova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (M.S.); (M.Z.); (S.N.); (V.A.); (E.C.); (S.S.)
| |
Collapse
|
8
|
Wang L, Shao Z. Aerobic Denitrification and Heterotrophic Sulfur Oxidation in the Genus Halomonas Revealed by Six Novel Species Characterizations and Genome-Based Analysis. Front Microbiol 2021; 12:652766. [PMID: 33815342 PMCID: PMC8014003 DOI: 10.3389/fmicb.2021.652766] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 11/16/2022] Open
Abstract
Bacteria of Halomonas are widely distributed in various environments and play a substantial role in the nutrient cycle. In this report, 14 strains capable of aerobic denitrification and heterotrophic sulfur oxidation were isolated from different habitats. Based on the phenotypic, genotypic, and chemotaxonomic analyses, these strains were considered to represent six novel species of the genus Halomonas, for which the names Halomonas zhangzhouensis sp. nov. type strain CXT3-11T ( = MCCC 1A11036T = KCTC 72087T), Halomonas aerodenitrificans sp. nov. CYD-9T ( = MCCC 1A11058T = KCTC 72088T), Halomonas sulfidoxydans sp. nov. CYN-1-2T ( = MCCC 1A11059T = KCTC 72089T), Halomonas ethanolica sp. nov. CYT3-1-1T ( = MCCC 1A11081T = KCTC 72090T), Halomonas sulfidivorans sp. nov. NLG_F1ET ( = MCCC 1A13718T = KCTC 72091T), and Halomonas tianxiuensis sp. nov. BC-M4-5T ( = MCCC 1A14433T = KCTC 72092T) are proposed. Intriguingly, they formed a unique group with 11 other species designated as the "H. desiderata group." To better understand their featured metabolisms, genes involved in denitrification and sulfur oxidation were analyzed, along with 193 other available genomes of the whole genus. Consistently, complete denitrification pathways were confirmed in the "H. desiderata group," in which napA, narG, nirS, norB, and nosZ genes coexist. Their nitrite reductase NirS formed a unique evolutionary lineage, distinguished from other denitrifiers in Halomonas. In addition, diverse occurrence patterns of denitrification genes were also observed in different phylogenetic clades of Halomonas. With respect to sulfur oxidation, fccAB genes involved in sulfide oxidation commonly exist in the "H. desiderata group," while sqr genes are diverse and can be found in more species; sqr genes co-occurred with fccAB in eight strains of this study, contributing to more active sulfide oxidation. Besides, the tsdA gene, which encodes an enzyme that oxidizes thiosulfate to tetrathionate, is ubiquitous in the genus Halomonas. The widespread presence of sqr/fccAB, pdo, and tsdA in Halomonas suggests that many Halomonas spp. can act as heterotrophic sulfur oxidizers. These results provide comprehensive insights into the potential of denitrification and sulfur oxidation in the whole genus of Halomonas. With regard to the global distribution of Halomonas, this report implies their unneglectable role in the biogeochemical cycle.
Collapse
Affiliation(s)
- Liping Wang
- School of Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- School of Environment, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
9
|
de Rink R, Klok JB, van Heeringen GJ, Sorokin DY, ter Heijne A, Zeijlmaker R, Mos YM, de Wilde V, Keesman KJ, Buisman CJ. Increasing the Selectivity for Sulfur Formation in Biological Gas Desulfurization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4519-4527. [PMID: 30882225 PMCID: PMC6581417 DOI: 10.1021/acs.est.8b06749] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the biotechnological desulfurization process under haloalkaline conditions, dihydrogen sulfide (H2S) is removed from sour gas and oxidized to elemental sulfur (S8) by sulfide-oxidizing bacteria. Besides S8, the byproducts sulfate (SO42-) and thiosulfate (S2O32-) are formed, which consume caustic and form a waste stream. The aim of this study was to increase selectivity toward S8 by a new process line-up for biological gas desulfurization, applying two bioreactors with different substrate conditions (i.e., sulfidic and microaerophilic), instead of one (i.e., microaerophilic). A 111-day continuous test, mimicking full scale operation, demonstrated that S8 formation was 96.6% on a molar H2S supply basis; selectivity for SO42- and S2O32- were 1.4 and 2.0% respectively. The selectivity for S8 formation in a control experiment with the conventional 1-bioreactor line-up was 75.6 mol %. At start-up, the new process line-up immediately achieved lower SO42- and S2O32- formations compared to the 1-bioreactor line-up. When the microbial community adapted over time, it was observed that SO42- formation further decreased. In addition, chemical formation of S2O32- was reduced due to biologically mediated removal of sulfide from the process solution in the anaerobic bioreactor. The increased selectivity for S8 formation will result in 90% reduction in caustic consumption and waste stream formation compared to the 1-bioreactor line-up.
Collapse
Affiliation(s)
- Rieks de Rink
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Johannes B.M. Klok
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| | | | - Dimitry Y. Sorokin
- Winogradsky
Institute of Microbiology, Research Centre
of Biotechnology, Russian Academy of Sciences, Prospect 60-let Oktyabrya 7/2, Moscow, Russian Federation
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Annemiek ter Heijne
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- E-mail:
| | | | - Yvonne M. Mos
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Vinnie de Wilde
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Karel J. Keesman
- Mathematical
and Statistical methods, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Cees J.N. Buisman
- Environmental
Technology, Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus, European
Centre of Excellence for Sustainable Water
Technology, Oostergoweg
9, 8911 MA Leeuwarden, The Netherlands
| |
Collapse
|
10
|
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front Microbiol 2018; 9:2309. [PMID: 30425685 PMCID: PMC6218600 DOI: 10.3389/fmicb.2018.02309] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Constanza Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Guillermo Bravo
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
11
|
Roman P, Klok JBM, Sousa JAB, Broman E, Dopson M, Van Zessen E, Bijmans MFM, Sorokin DY, Janssen AJH. Selection and Application of Sulfide Oxidizing Microorganisms Able to Withstand Thiols in Gas Biodesulfurization Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12808-12815. [PMID: 27934286 DOI: 10.1021/acs.est.6b04222] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
After the first commercial applications of a new biological process for the removal of hydrogen sulfide (H2S) from low pressure biogas, the need arose to broaden the operating window to also enable the removal of organosulfur compounds from high pressure sour gases. In this study we have selected microorganisms from a full-scale biodesulfurization system that are capable of withstanding the presence of thiols. This full-scale unit has been in stable operation for more than 10 years. We investigated the microbial community by using high-throughput sequencing of 16S rRNA gene amplicons which showed that methanethiol gave a competitive advantage to bacteria belonging to the genera Thioalkalibacter (Halothiobacillaceae family) and Alkalilimnicola (Ectothiorhosdospiraceae family). The sulfide-oxidizing potential of the acclimatized population was investigated under elevated thiol loading rates (4.5-9.1 mM d-1), consisting of a mix of methanethiol, ethanethiol, and propanethiol. With this biomass, it was possible to achieve a stable bioreactor operation at which 80% of the supplied H2S (61 mM d-1) was biologically oxidized to elemental sulfur. The remainder was chemically produced thiosulfate. Moreover, we found that a conventionally applied method for controlling the oxygen supply to the bioreactor, that is, by maintaining a redox potential set-point value, appeared to be ineffective in the presence of thiols.
Collapse
Affiliation(s)
- Pawel Roman
- Sub-Department of Environmental Technology, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Johannes B M Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Paqell, Asterweg 109, 1031 HM Amsterdam, The Netherlands
| | - João A B Sousa
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- Laboratory of Microbiology, Wageningen University , Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | - Elias Broman
- Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University , Kalmar, Sweden
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnaeus University , Kalmar, Sweden
| | - Erik Van Zessen
- Paques B.V., Tjalke de Boerstrjitte 24, 8561 EL Balk, The Netherlands
| | - Martijn F M Bijmans
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences , Prospect 60-let Oktyabrya 7/2, 117811 Moscow, Russia
- Department of Biotechnology, Delft University of Technology , Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Albert J H Janssen
- Sub-Department of Environmental Technology, Wageningen University , P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Shell Technology Centre Bangalore, RMZ Centennial Campus B, Kundalahalli Main Road, Bengaluru 560 048 India
| |
Collapse
|
12
|
Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of soda lakes. Curr Opin Microbiol 2015; 25:88-96. [PMID: 26025021 DOI: 10.1016/j.mib.2015.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and sulfur cycling, including oxygenic and anoxygenic phototrophs, aerobic chemolithotrophs, fermenting and respiring anaerobes. The main conclusion from this work is that the soda lakes are very different from other high-salt systems in respect to microbial richness and activity. The reason for this difference is determined by the major physico-chemical features of two dominant salts - NaCl in neutral saline systems and sodium carbonates in soda lakes, that are influencing the amount of energy required for osmotic adaptation.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | - Horia L Banciu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zakharyuk AG, Kozyreva LP, Khijniak TV, Namsaraev BB, Shcherbakova VA. Desulfonatronum zhilinae sp. nov., a novel haloalkaliphilic sulfate-reducing bacterium from soda Lake Alginskoe, Trans-Baikal Region, Russia. Extremophiles 2015; 19:673-80. [DOI: 10.1007/s00792-015-0747-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022]
|
14
|
Extracellular Proteases from Halophilic and Haloalkaliphilic Bacteria: Occurrence and Biochemical Properties. SUSTAINABLE DEVELOPMENT AND BIODIVERSITY 2015. [DOI: 10.1007/978-3-319-14595-2_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18:791-809. [PMID: 25156418 PMCID: PMC4158274 DOI: 10.1007/s00792-014-0670-9] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 01/26/2023]
Abstract
Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art 'meta-omic' techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, RAS, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tom Berben
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emily Denise Melton
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Lex Overmars
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte D. Vavourakis
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard Muyzer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Baxter BK, Gunde-Cimerman N, Oren A. Salty sisters: The women of halophiles. Front Microbiol 2014; 5:192. [PMID: 24926287 PMCID: PMC4045239 DOI: 10.3389/fmicb.2014.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/10/2014] [Indexed: 01/02/2023] Open
Abstract
A history of halophile research reveals the commitment of scientists to uncovering the secrets of the limits of life, in particular life in high salt concentration and under extreme osmotic pressure. During the last 40 years, halophile scientists have indeed made important contributions to extremophile research, and prior international halophiles congresses have documented both the historical and the current work. During this period of salty discoveries, female scientists, in general, have grown in number worldwide. But those who worked in the field when there were small numbers of women sometimes saw their important contributions overshadowed by their male counterparts. Recent studies suggest that modern female scientists experience gender bias in matters such as conference invitations and even representation among full professors. In the field of halophilic microbiology, what is the impact of gender bias? How has the participation of women changed over time? What do women uniquely contribute to this field? What are factors that impact current female scientists to a greater degree? This essay emphasizes the “her story” (not “history”) of halophile discovery.
Collapse
Affiliation(s)
- Bonnie K Baxter
- Great Salt Lake Institute, Westminster College Salt Lake City, UT, USA
| | - Nina Gunde-Cimerman
- Molecular Genetics and Microbiology, University of Ljubljana Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem Givat Ram, Israel
| |
Collapse
|
17
|
Du Y, Feng Y, Dong Y, Qu Y, Liu J, Zhou X, Ren N. Coupling interaction of cathodic reduction and microbial metabolism in aerobic biocathode of microbial fuel cell. RSC Adv 2014. [DOI: 10.1039/c4ra03441d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Certain mixed consortia colonized on aerobic biocathodes can improve the 4-electron oxygen reduction of cathodes; however, the coupling interaction of the cathodic reaction and microbial metabolism remains unclear.
Collapse
Affiliation(s)
- Yue Du
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090, China
| | - Yue Dong
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090, China
| | - Youpeng Qu
- School of Life Science and Technology
- Harbin Institute of Technology
- Harbin 150080, China
| | - Jia Liu
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090, China
| | - Xiangtong Zhou
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin 150090, China
| |
Collapse
|
18
|
Saralov AI, Kuznetsov BB, Reutskikh EM, Baslerov RV, Panteleeva AN, Suzina NE. Arhodomonas recens sp. nov., a halophilic alkane-utilizing hydrogen-oxidizing bacterium from the brines of flotation enrichment of potassium minerals. Microbiology (Reading) 2012. [DOI: 10.1134/s002626171205013x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Fujimura R, Sato Y, Nishizawa T, Nanba K, Oshima K, Hattori M, Kamijo T, Ohta H. Analysis of early bacterial communities on volcanic deposits on the island of Miyake (Miyake-jima), Japan: a 6-year study at a fixed site. Microbes Environ 2011; 27:19-29. [PMID: 22075623 PMCID: PMC4036035 DOI: 10.1264/jsme2.me11207] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microbial colonization on new terrestrial substrates represents the initiation of new soil ecosystem formation. In this study, we analyzed early bacterial communities growing on volcanic ash deposits derived from the 2000 Mount Oyama eruption on the island of Miyake (Miyake-jima), Japan. A site was established in an unvegetated area near the summit and investigated over a 6-year period from 2003 to 2009. Collected samples were acidic (pH 3.0–3.6), did not utilize any organic substrates in ECO microplate assays (Biolog), and harbored around 106 cells (g dry weight)−1 of autotrophic Fe(II) oxidizers by most-probable-number (MPN) counts. Acidithiobacillus ferrooxidans, Acidithiobacillus ferrivorans, and the Leptospirillum groups I, II and III were found to be abundant in the deposits by clone library analysis of bacterial 16S rRNA genes. The numerical dominance of Acidithiobacillus ferrooxidans was also supported by analysis of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Comparing the 16S rRNA gene clone libraries from samples differing in age, shifts in Fe(II)-oxidizing populations seemed to occur with deposit aging. The detection of known 16S rRNA gene sequences from Fe(III)-reducing acidophiles promoted us to propose the acidity-driven iron cycle for the early microbial ecosystem on the deposit.
Collapse
Affiliation(s)
- Reiko Fujimura
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Park SJ, Pham VH, Jung MY, Kim SJ, Kim JG, Roh DH, Rhee SK. Thioalbus denitrificans gen. nov., sp. nov., a chemolithoautotrophic sulfur-oxidizing gammaproteobacterium, isolated from marine sediment. Int J Syst Evol Microbiol 2011; 61:2045-2051. [DOI: 10.1099/ijs.0.024844-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A mesophilic, facultatively anaerobic, autotrophic bacterium, designated strain Su4T, was isolated from marine sediment. The isolate was able to utilize reduced sulfur compounds including thiosulfate, tetrathionate, sulfur and sulfide but not sulfite as the energy source. Growth occurred under aerobic and denitrifying chemolithoautotrophic conditions in the presence of thiosulfate as an electron donor and bicarbonate as a carbon source. The G+C content of the genomic DNA was 64.5 mol%. Comparative 16S rRNA gene sequence studies showed that strain Su4T was clearly affiliated with the class Gammaproteobacteria. The isolate was Gram-negative-staining and rod-shaped, lacked flagella and grew in artificial seawater medium at 10–40 °C (optimum 28–32 °C) and in 1–5 % (w/v) NaCl (optimum 3 % NaCl). Strain Su4T possessed C16 : 0, C16 : 1ω7c/iso-C15 : 0 2-OH and C18 : 1ω7c/ω9t/ω12t as the major fatty acids. On the basis of phenotypic and phylogenetic analysis, the isolate represents a novel species of a novel genus, for which the name Thioalbus denitrificans is proposed. The type strain is Su4T ( = KCTC 5699T = JCM 15568T).
Collapse
Affiliation(s)
- Soo-Je Park
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Cheongju 361-763, Republic of Korea
| | - Vinh Hoa Pham
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Cheongju 361-763, Republic of Korea
| | - Man-Young Jung
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Cheongju 361-763, Republic of Korea
| | - So-Jeong Kim
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Cheongju 361-763, Republic of Korea
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Cheongju 361-763, Republic of Korea
| | - Dong-Hyun Roh
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Cheongju 361-763, Republic of Korea
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, 12 Gaeshin-dong, Cheongju 361-763, Republic of Korea
| |
Collapse
|
21
|
Hicks DB, Liu J, Fujisawa M, Krulwich TA. F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1362-77. [PMID: 20193659 PMCID: PMC2890045 DOI: 10.1016/j.bbabio.2010.02.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 12/14/2022]
Abstract
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values>10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.
Collapse
Affiliation(s)
- David B. Hicks
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jun Liu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Makoto Fujisawa
- Faculty of Food Life Sciences, Toyo University, Ora-gun, Gunma 374-0193, Japan
| | - Terry A. Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
22
|
Sorokin DY, Tourova TP, Kovaleva OL, Kuenen JG, Muyzer G. Aerobic carboxydotrophy under extremely haloalkaline conditions in Alkalispirillum/Alkalilimnicola strains isolated from soda lakes. MICROBIOLOGY-SGM 2009; 156:819-827. [PMID: 19959573 DOI: 10.1099/mic.0.033712-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aerobic enrichments from soda lake sediments with CO as the only substrate resulted in the isolation of five bacterial strains capable of autotrophic growth with CO at extremely high pH and salinity. The strains belonged to the Alkalispirillum/Alkalilimnicola cluster in the Gammaproteobacteria, where the ability to oxidize CO, but not growth with CO, has been demonstrated previously. The growth with CO was possible only at an oxygen concentration below 5 % and CO concentration below 20 % in the gas phase. The isolates were also capable of growth with formate but not with H(2). The carboxydotrophic growth occurred within a narrow pH range from 8 to 10.5 (optimum at 9.5) and a broad salt concentration from 0.3 to 3.5 M total Na(+) (optimum at 1.0 M). Cells grown on CO had high respiration activity with CO and formate, while the cells grown on formate actively oxidized formate alone. In CO-grown cells, CO-dehydrogenase (CODH) activity was detectable both in soluble and membrane fractions, while the NAD-independent formate dehydrogenase (FDH) resided solely in membranes. The results of total protein profiling and the failure to detect CODH with conventional primers for the coxL gene indicated that the CO-oxidizing enzyme in haloalkaliphilic isolates might differ from the classical aerobic CODH complex. A single cbbL gene encoding the RuBisCO large subunit was detected in all strains, suggesting the presence of the Calvin cycle of inorganic carbon fixation. Overall, these results demonstrated the possibility of aerobic carboxydotrophy under extremely haloalkaline conditions.
Collapse
Affiliation(s)
- Dimitry Yu Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - Tatjana P Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - Olga L Kovaleva
- Faculty of Biology, Department of Microbiology, Moscow State University, Moscow, Russia
| | - J Gijs Kuenen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Gerard Muyzer
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
23
|
Respiratory and dissimilatory nitrate-reducing communities from an extreme saline alkaline soil of the former lake Texcoco (Mexico). Extremophiles 2008; 13:169-78. [DOI: 10.1007/s00792-008-0207-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
|
24
|
Sorokin DY, van den Bosch PLF, Abbas B, Janssen AJH, Muyzer G. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Appl Microbiol Biotechnol 2008; 80:965-75. [PMID: 18677474 PMCID: PMC7419352 DOI: 10.1007/s00253-008-1598-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 06/26/2008] [Accepted: 06/26/2008] [Indexed: 11/15/2022]
Abstract
Thiopaq biotechnology for partial sulfide oxidation to elemental sulfur is an efficient way to remove H(2)S from biogases. However, its application for high-pressure natural gas desulfurization needs upgrading. Particularly, an increase in alkalinity of the scrubbing liquid is required. Therefore, the feasibility of sulfide oxidation into elemental sulfur under oxygen limitation was tested at extremely haloalkaline conditions in lab-scale bioreactors using mix sediments from hypersaline soda lakes as inoculum. The microbiological analysis, both culture dependent and independent, of the successfully operating bioreactors revealed a domination of obligately chemolithoautotrophic and extremely haloalkaliphilic sulfur-oxidizing bacteria belonging to the genus Thioalkalivibrio. Two subgroups were recognized among the isolates. The subgroup enriched from the reactors operating at pH 10 clustered with Thioalkalivibrio jannaschii-Thioalkalivibrio versutus core group of the genus Thioalkalivibrio. Another subgroup, obtained mostly with sulfide as substrate and at lower pH, belonged to the cluster of facultatively alkaliphilic Thioalkalivibrio halophilus. Overall, the results clearly indicate a large potential of the genus Thiolalkalivibrio to efficiently oxidize sulfide at extremely haloalkaline conditions, which makes it suitable for application in the natural gas desulfurization.
Collapse
MESH Headings
- Biodiversity
- Bioreactors/microbiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Ectothiorhodospiraceae/classification
- Ectothiorhodospiraceae/genetics
- Ectothiorhodospiraceae/isolation & purification
- Genes, rRNA
- Hydrogen-Ion Concentration
- Molecular Sequence Data
- Oxidation-Reduction
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Salts
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Sulfides/metabolism
- Sulfur/metabolism
Collapse
Affiliation(s)
- D Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
25
|
Shapovalova AA, Khijniak TV, Tourova TP, Muyzer G, Sorokin DY. Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes. Extremophiles 2008; 12:619-25. [PMID: 18452025 PMCID: PMC2525850 DOI: 10.1007/s00792-008-0166-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 04/11/2008] [Indexed: 11/26/2022]
Abstract
In this paper we describe denitrification at extremely high salt and pH in sediments from hypersaline alkaline soda lakes and soda soils. Experiments with sediment slurries demonstrated the presence of acetate-utilizing denitrifying populations active at in situ conditions. Anaerobic enrichment cultures at pH 10 and 4 M total Na+ with acetate as electron donor and nitrate, nitrite and N2O as electron acceptors resulted in the dominance of Gammaproteobacteria belonging to the genus Halomonas. Both mixed and pure culture studies identified nitrite and N2O reduction as rate-limiting steps in the denitrification process at extremely haloalkaline conditions.
Collapse
Affiliation(s)
- A. A. Shapovalova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - T. V. Khijniak
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - T. P. Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
| | - G. Muyzer
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - D. Y. Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811 Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
26
|
Tourova TP, Spiridonova EM, Berg IA, Slobodova NV, Boulygina ES, Sorokin DY. Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH gene sequences. Int J Syst Evol Microbiol 2008; 57:2387-2398. [PMID: 17911316 DOI: 10.1099/ijs.0.65041-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The occurrence of genes encoding nitrogenase and ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) was investigated in the members of the family Ectothiorhodospiraceae. This family forms a separate phylogenetic lineage within the Gammaproteobacteria according to 16S rRNA gene sequence analysis and mostly includes photo- and chemoautotrophic halophilic and haloalkaliphilic bacteria. The cbbL gene encoding the large subunit of 'green-like' form I RubisCO was found in all strains, except the type strains of Alkalispirillum mobile and Arhodomonas aquaeolei. The nifH gene encoding nitrogenase reductase was present in all investigated species of the phototrophic genera Ectothiorhodospira, Halorhodospira and Thiorhodospira, but not of the genus Ectothiorhodosinus. Unexpectedly, nifH fragments were also obtained for the chemotrophic species Thioalkalispira microaerophila and Alkalilimnicola halodurans, for which diazotrophic potential has not previously been assumed. The cbbL-, nifH- and 16S rRNA gene-based trees were not highly congruent in their branching patterns since, in the 'RubisCO' and 'nitrogenase' trees, representatives of the Ectothiorhodospiraceae are divided in a number of broadly distributed clusters and branches. However, the data obtained may be regarded as evidence of the monophyletic origin of the cbbL and nifH genes in most species within the family Ectothiorhodospiraceae and mainly corresponded to the current taxonomic structure of this family. The cbbL phylogeny of the chemolithoautotrophic sulfur-oxidizers Thioalkalivibrio nitratireducens and Thioalkalivibrio paradoxus and the nitrifier Nitrococcus mobilis deviated significantly from the 16S-rRNA gene-based phylogeny. These species clustered with one of the duplicated cbbL genes of the purple sulfur bacterium Allochromatium vinosum, a member of the family Chromatiaceae.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Ectothiorhodospiraceae/classification
- Ectothiorhodospiraceae/genetics
- Evolution, Molecular
- Genes, rRNA
- Molecular Sequence Data
- Oxidoreductases/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Ribulose-Bisphosphate Carboxylase/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Tatjana P Tourova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| | | | - Ivan A Berg
- Department of Microbiology, Moscow State University, Moscow, Russia
| | | | | | - Dimitry Yu Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
27
|
Boltyanskaya YV, Kevbrin VV, Lysenko AM, Kolganova TV, Tourova TP, Osipov GA, Zhilina TN. Halomonas mongoliensis sp. nov. and Halomonas kenyensis sp. nov., new haloalkaliphilic denitrifiers capable of N2O reduction, isolated from soda lakes. Microbiology (Reading) 2007. [DOI: 10.1134/s0026261707060148] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Hoeft SE, Blum JS, Stolz JF, Tabita FR, Witte B, King GM, Santini JM, Oremland RS. Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 2007; 57:504-512. [PMID: 17329775 DOI: 10.1099/ijs.0.64576-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A facultative chemoautotrophic bacterium, strain MLHE-1T, was isolated from Mono Lake, an alkaline hypersaline soda lake in California, USA. Cells of strain MLHE-1T were Gram-negative, short motile rods that grew with inorganic electron donors (arsenite, hydrogen, sulfide or thiosulfate) coupled with the reduction of nitrate to nitrite. No aerobic growth was attained with arsenite or sulfide, but hydrogen sustained both aerobic and anaerobic growth. No growth occurred when nitrite or nitrous oxide was substituted for nitrate. Heterotrophic growth was observed under aerobic and anaerobic (nitrate) conditions. Cells of strain MLHE-1T could oxidize but not grow on CO, while CH4 neither supported growth nor was it oxidized. When grown chemoautotrophically, strain MLHE-1T assimilated inorganic carbon via the Calvin–Benson–Bassham reductive pentose phosphate pathway, with the activity of ribulose 1,5-bisphosphate carboxylase (RuBisCO) functioning optimally at 0.1 M NaCl and at pH 7.3. Strain MLHE-1T grew over broad ranges of pH (7.3–10.0; optimum, 9.3), salinity (15–190 g l−1; optimum 30 g l−1) and temperature (13–40 °C; optimum, 30 °C). Phylogenetic analysis of 16S rRNA gene sequences placed strain MLHE-1T in the class Gammaproteobacteria (family Ectothiorhodospiraceae) and most closely related to Alkalispirillum mobile (98.5 %) and Alkalilimnicola halodurans (98.6 %), although none of these three haloalkaliphilic micro-organisms were capable of photoautotrophic growth and only strain MLHE-1T was able to oxidize As(III). On the basis of physiological characteristics and DNA–DNA hybridization data, it is suggested that strain MLHE-1T represents a novel species within the genus Alkalilimnicola for which the name Alkalilimnicola ehrlichii is proposed. The type strain is MLHE-1T (=DSM 17681T=ATCC BAA-1101T). Aspects of the annotated full genome of Alkalilimnicola ehrlichii are discussed in the light of its physiology.
Collapse
Affiliation(s)
- Shelley E Hoeft
- US Geological Survey, 345 Middlefield Road, MS 480, Menlo Park, CA 94025, USA
| | - Jodi Switzer Blum
- US Geological Survey, 345 Middlefield Road, MS 480, Menlo Park, CA 94025, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Brian Witte
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Gary M King
- Darling Marine Center, University of Maine, Walpole, ME 04573, USA
| | | | - Ronald S Oremland
- US Geological Survey, 345 Middlefield Road, MS 480, Menlo Park, CA 94025, USA
| |
Collapse
|