1
|
Bize A, Midoux C, Mariadassou M, Schbath S, Forterre P, Da Cunha V. Exploring short k-mer profiles in cells and mobile elements from Archaea highlights the major influence of both the ecological niche and evolutionary history. BMC Genomics 2021; 22:186. [PMID: 33726663 PMCID: PMC7962313 DOI: 10.1186/s12864-021-07471-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND K-mer-based methods have greatly advanced in recent years, largely driven by the realization of their biological significance and by the advent of next-generation sequencing. Their speed and their independence from the annotation process are major advantages. Their utility in the study of the mobilome has recently emerged and they seem a priori adapted to the patchy gene distribution and the lack of universal marker genes of viruses and plasmids. To provide a framework for the interpretation of results from k-mer based methods applied to archaea or their mobilome, we analyzed the 5-mer DNA profiles of close to 600 archaeal cells, viruses and plasmids. Archaea is one of the three domains of life. Archaea seem enriched in extremophiles and are associated with a high diversity of viral and plasmid families, many of which are specific to this domain. We explored the dataset structure by multivariate and statistical analyses, seeking to identify the underlying factors. RESULTS For cells, the 5-mer profiles were inconsistent with the phylogeny of archaea. At a finer taxonomic level, the influence of the taxonomy and the environmental constraints on 5-mer profiles was very strong. These two factors were interdependent to a significant extent, and the respective weights of their contributions varied according to the clade. A convergent adaptation was observed for the class Halobacteria, for which a strong 5-mer signature was identified. For mobile elements, coevolution with the host had a clear influence on their 5-mer profile. This enabled us to identify one previously known and one new case of recent host transfer based on the atypical composition of the mobile elements involved. Beyond the effect of coevolution, extrachromosomal elements strikingly retain the specific imprint of their own viral or plasmid taxonomic family in their 5-mer profile. CONCLUSION This specific imprint confirms that the evolution of extrachromosomal elements is driven by multiple parameters and is not restricted to host adaptation. In addition, we detected only recent host transfer events, suggesting the fast evolution of short k-mer profiles. This calls for caution when using k-mers for host prediction, metagenomic binning or phylogenetic reconstruction.
Collapse
Affiliation(s)
- Ariane Bize
- Université Paris-Saclay, INRAE, PROSE, F-92761, Antony, France.
| | - Cédric Midoux
- Université Paris-Saclay, INRAE, PROSE, F-92761, Antony, France.,Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Mahendra Mariadassou
- Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Sophie Schbath
- Université Paris-Saclay, INRAE, MaIAGE, F-78350, Jouy-en-Josas, France.,Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, F-78350, Jouy-en-Josas, France
| | - Patrick Forterre
- Institut Pasteur, Unité de Virologie des Archées, Département de Microbiologie, 25 Rue du Docteur Roux, 75015, Paris, France. .,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
3
|
Kumar S, Kumari R, Sharma V. Coevolution mechanisms that adapt viruses to genetic code variations implemented in their hosts. J Genet 2016; 95:3-12. [PMID: 27019427 DOI: 10.1007/s12041-016-0612-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sushil Kumar
- SKA Institution for Research, Education and Development, 4/11 SarvPriya Vihar, New Delhi 110016, India.
| | | | | |
Collapse
|
4
|
Dhakar K, Pandey A. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol 2016; 100:2499-510. [PMID: 26780356 DOI: 10.1007/s00253-016-7285-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Microorganisms that inhabit the extreme pH environments are classified as acidophiles and alkaliphiles. A number of studies emerged from extreme high (hot springs, hydrothermal vents) as well as low temperature (arctic and antarctic regions, sea water, ice shelf, marine sediments, cold deserts, glaciers, temperate forests, and plantations) environments have highlighted the occurrence of microorganisms (thermophiles/psychrophiles) with the ability to tolerate wide pH range, from acidic to alkaline (1.5-14.0 in some cases), under laboratory conditions. However, the sampling source (soil/sediment) of these microorganisms showed the pH to be neutral or slightly acidic/alkaline. The aim of the present review is to discuss the phenomenon of wide pH range tolerance possessed by these microorganisms as a hidden character in perspective of their habitats, possible mechanisms, phylogeny, ecological and biotechnological relevance, and future perspectives. It is believed that the genome is a probable reservoir of the hidden variations. The extremophiles have the ability to adapt against the environmental change that is probably through the expression/regulation of the specific genes that were already present in the genome. The phenomenon is likely to have broad implications in biotechnology, including both environmental (such as bioremediation, biodegradation, and biocontrol), and industrial applications (as a source of novel extremozymes and many other useful bioactive compounds with wide pH range tolerance).
Collapse
Affiliation(s)
- Kusum Dhakar
- Biotechnological Applications, G. B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Anita Pandey
- Biotechnological Applications, G. B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India.
| |
Collapse
|
5
|
Johansson HO, Matos T, Luz JS, Feitosa E, Oliveira CC, Pessoa A, Bülow L, Tjerneld F. Plasmid DNA partitioning and separation using poly(ethylene glycol)/poly(acrylate)/salt aqueous two-phase systems. J Chromatogr A 2012; 1233:30-5. [DOI: 10.1016/j.chroma.2012.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
|
6
|
Amlacher S, Sarges P, Flemming D, van Noort V, Kunze R, Devos DP, Arumugam M, Bork P, Hurt E. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile. Cell 2011; 146:277-89. [PMID: 21784248 DOI: 10.1016/j.cell.2011.06.039] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/15/2011] [Accepted: 06/24/2011] [Indexed: 01/25/2023]
Abstract
Despite decades of research, the structure and assembly of the nuclear pore complex (NPC), which is composed of ∼30 nucleoporins (Nups), remain elusive. Here, we report the genome of the thermophilic fungus Chaetomium thermophilum (ct) and identify the complete repertoire of Nups therein. The thermophilic proteins show improved properties for structural and biochemical studies compared to their mesophilic counterparts, and purified ctNups enabled the reconstitution of the inner pore ring module that spans the width of the NPC from the anchoring membrane to the central transport channel. This module is composed of two large Nups, Nup192 and Nup170, which are flexibly bridged by short linear motifs made up of linker Nups, Nic96 and Nup53. This assembly illustrates how Nup interactions can generate structural plasticity within the NPC scaffold. Our findings therefore demonstrate the utility of the genome of a thermophilic eukaryote for studying complex molecular machines.
Collapse
Affiliation(s)
- Stefan Amlacher
- Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Brügger K, Chen L, Stark M, Zibat A, Redder P, Ruepp A, Awayez M, She Q, Garrett RA, Klenk HP. The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2007; 2:127-35. [PMID: 17350933 PMCID: PMC2686385 DOI: 10.1155/2007/745987] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hyperthermus butylicus, a hyperthermophilic neutrophile and anaerobe, is a member of the archaeal kingdom Crenarchaeota. Its genome consists of a single circular chromosome of 1,667,163 bp with a 53.7% G+C content. A total of 1672 genes were annotated, of which 1602 are protein-coding, and up to a third are specific to H. butylicus. In contrast to some other crenarchaeal genomes, a high level of GUG and UUG start codons are predicted. Two cdc6 genes are present, but neither could be linked unambiguously to an origin of replication. Many of the predicted metabolic gene products are associated with the fermentation of peptide mixtures including several peptidases with diverse specificities, and there are many encoded transporters. Most of the sulfur-reducing enzymes, hydrogenases and electron-transfer proteins were identified which are associated with energy production by reducing sulfur to H(2)S. Two large clusters of regularly interspaced repeats (CRISPRs) are present, one of which is associated with a crenarchaeal-type cas gene superoperon; none of the spacer sequences yielded good sequence matches with known archaeal chromosomal elements. The genome carries no detectable transposable or integrated elements, no inteins, and introns are exclusive to tRNA genes. This suggests that the genome structure is quite stable, possibly reflecting a constant, and relatively uncompetitive, natural environment.
Collapse
Affiliation(s)
- Kim Brügger
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
- These authors contributed equally to the project
| | - Lanming Chen
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
- These authors contributed equally to the project
| | - Markus Stark
- e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany
- Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team
| | - Arne Zibat
- Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team
| | - Peter Redder
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | - Andreas Ruepp
- Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team
- Present address: Institut für Bioinformatik, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Mariana Awayez
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | - Qunxin She
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
| | - Roger A. Garrett
- Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark
- Editing author
| | - Hans-Peter Klenk
- e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany
- Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team
- Corresponding author ()
| |
Collapse
|
8
|
Baker-Austin C, Dopson M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol 2007; 15:165-71. [PMID: 17331729 DOI: 10.1016/j.tim.2007.02.005] [Citation(s) in RCA: 358] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 01/30/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Microorganisms that have a pH optimum for growth of less than pH 3 are termed "acidophiles". To grow at low pH, acidophiles must maintain a pH gradient of several pH units across the cellular membrane while producing ATP by the influx of protons through the F(0)F(1) ATPase. Recent advances in the biochemical analysis of acidophiles coupled to sequencing of several genomes have shed new insights into acidophile pH homeostatic mechanisms. Acidophiles seem to share distinctive structural and functional characteristics including a reversed membrane potential, highly impermeable cell membranes and a predominance of secondary transporters. Also, once protons enter the cytoplasm, methods are required to alleviate effects of a lowered internal pH. This review highlights recent insights regarding how acidophiles are able to survive and grow in these extreme conditions.
Collapse
Affiliation(s)
- Craig Baker-Austin
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA.
| | | |
Collapse
|
9
|
Zeldovich KB, Berezovsky IN, Shakhnovich EI. Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol 2007; 3:e5. [PMID: 17222055 PMCID: PMC1769408 DOI: 10.1371/journal.pcbi.0030005] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 11/29/2006] [Indexed: 11/19/2022] Open
Abstract
There have been considerable attempts in the past to relate phenotypic trait--habitat temperature of organisms--to their genotypes, most importantly compositions of their genomes and proteomes. However, despite accumulation of anecdotal evidence, an exact and conclusive relationship between the former and the latter has been elusive. We present an exhaustive study of the relationship between amino acid composition of proteomes, nucleotide composition of DNA, and optimal growth temperature (OGT) of prokaryotes. Based on 204 complete proteomes of archaea and bacteria spanning the temperature range from -10 degrees C to 110 degrees C, we performed an exhaustive enumeration of all possible sets of amino acids and found a set of amino acids whose total fraction in a proteome is correlated, to a remarkable extent, with the OGT. The universal set is Ile, Val, Tyr, Trp, Arg, Glu, Leu (IVYWREL), and the correlation coefficient is as high as 0.93. We also found that the G + C content in 204 complete genomes does not exhibit a significant correlation with OGT (R = -0.10). On the other hand, the fraction of A + G in coding DNA is correlated with temperature, to a considerable extent, due to codon patterns of IVYWREL amino acids. Further, we found strong and independent correlation between OGT and the frequency with which pairs of A and G nucleotides appear as nearest neighbors in genome sequences. This adaptation is achieved via codon bias. These findings present a direct link between principles of proteins structure and stability and evolutionary mechanisms of thermophylic adaptation. On the nucleotide level, the analysis provides an example of how nature utilizes codon bias for evolutionary adaptation to extreme conditions. Together these results provide a complete picture of how compositions of proteomes and genomes in prokaryotes adjust to the extreme conditions of the environment.
Collapse
Affiliation(s)
- Konstantin B Zeldovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Igor N Berezovsky
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
10
|
Forsdyke DR. Conflict Resolution. Evol Bioinform Online 2006. [DOI: 10.1007/978-0-387-33419-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|