1
|
Manning RJ, Tschurtschenthaler M, Sabitzer S, Witte A. Manipulation of viral protein production using the PCNA of halovirus фCh1 via alternative start codon usage. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
2
|
Badel C, Da Cunha V, Oberto J. Archaeal tyrosine recombinases. FEMS Microbiol Rev 2021; 45:fuab004. [PMID: 33524101 PMCID: PMC8371274 DOI: 10.1093/femsre/fuab004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
The integration of mobile genetic elements into their host chromosome influences the immediate fate of cellular organisms and gradually shapes their evolution. Site-specific recombinases catalyzing this integration have been extensively characterized both in bacteria and eukarya. More recently, a number of reports provided the in-depth characterization of archaeal tyrosine recombinases and highlighted new particular features not observed in the other two domains. In addition to being active in extreme environments, archaeal integrases catalyze reactions beyond site-specific recombination. Some of these integrases can catalyze low-sequence specificity recombination reactions with the same outcome as homologous recombination events generating deep rearrangements of their host genome. A large proportion of archaeal integrases are termed suicidal due to the presence of a specific recombination target within their own gene. The paradoxical maintenance of integrases that disrupt their gene upon integration implies novel mechanisms for their evolution. In this review, we assess the diversity of the archaeal tyrosine recombinases using a phylogenomic analysis based on an exhaustive similarity network. We outline the biochemical, ecological and evolutionary properties of these enzymes in the context of the families we identified and emphasize similarities and differences between archaeal recombinases and their bacterial and eukaryal counterparts.
Collapse
Affiliation(s)
- Catherine Badel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Violette Da Cunha
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jacques Oberto
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
3
|
Abstract
The last universal cellular ancestor (LUCA) is the most recent population of organisms from which all cellular life on Earth descends. The reconstruction of the genome and phenotype of the LUCA is a major challenge in evolutionary biology. Given that all life forms are associated with viruses and/or other mobile genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by projecting back in time using the extant distribution of viruses across the two primary domains of life, bacteria and archaea, and tracing the evolutionary histories of some key virus genes, we attempt a reconstruction of the LUCA virome. Even a conservative version of this reconstruction suggests a remarkably complex virome that already included the main groups of extant viruses of bacteria and archaea. We further present evidence of extensive virus evolution antedating the LUCA. The presence of a highly complex virome implies the substantial genomic and pan-genomic complexity of the LUCA itself.
Collapse
|
4
|
Dyall-Smith M, Palm P, Wanner G, Witte A, Oesterhelt D, Pfeiffer F. Halobacterium salinarum virus ChaoS9, a Novel Halovirus Related to PhiH1 and PhiCh1. Genes (Basel) 2019; 10:E194. [PMID: 30832293 PMCID: PMC6471424 DOI: 10.3390/genes10030194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022] Open
Abstract
The unexpected lysis of a large culture of Halobacterium salinarum strain S9 was found to be caused by a novel myovirus, designated ChaoS9. Virus purification from the culture lysate revealed a homogeneous population of caudovirus-like particles. The viral genome is linear, dsDNA that is partially redundant and circularly permuted, has a unit length of 55,145 nt, a G + C% of 65.3, and has 85 predicted coding sequences (CDS) and one tRNA (Arg) gene. The left arm of the genome (0⁻28 kbp) encodes proteins similar in sequence to those from known caudoviruses and was most similar to myohaloviruses phiCh1 (host: Natrialbamagadii) and phiH1 (host: Hbt. salinarum). It carries a tail-fiber gene module similar to the invertible modules present in phiH1 and phiCh1. However, while the tail genes of ChaoS9 were similar to those of phiCh1 and phiH1, the Mcp of ChaoS9 was most similar (36% aa identity) to that of Haloarcula hispanica tailed virus 1 (HHTV-1). Provirus elements related to ChaoS9 showed most similarity to tail/assembly proteins but varied in their similarity with head/assembly proteins. The right arm (29⁻55 kbp) of ChaoS9 encoded proteins involved in DNA replication (ParA, RepH, and Orc1) but the other proteins showed little similarity to those from phiH1, phiCh1, or provirus elements, and most of them could not be assigned a function. ChaoS9 is probably best classified within the genus Myohalovirus, as it shares many characteristics with phiH1 (and phiCh1), including many similar proteins. However, the head/assembly gene region appears to have undergone a recombination event, and the inferred proteins are different to those of phiH1 and phiCh1, including the major capsid protein. This makes the taxonomic classification of ChaoS9 more ambiguous. We also report a revised genome sequence and annotation of Natrialba virus phiCh1.
Collapse
Affiliation(s)
- Mike Dyall-Smith
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3052, Australia.
| | - Peter Palm
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Gerhard Wanner
- AG Ultrastrukturforschung, Biozentrum der LMU, Großhadernerstrasse 2-4, 82152 Martinsried, Germany.
| | - Angela Witte
- Department of Microbiology, Immunobiology and Genetics, MFPL Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria.
| | - Dieter Oesterhelt
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Friedhelm Pfeiffer
- Computational Biology Group, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
5
|
Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M, van der Does C, Albers SV. Mechanisms of gene flow in archaea. Nat Rev Microbiol 2017; 15:492-501. [DOI: 10.1038/nrmicro.2017.41] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
The Viral Gene ORF79 Encodes a Repressor Regulating Induction of the Lytic Life Cycle in the Haloalkaliphilic Virus ϕCh1. J Virol 2017; 91:JVI.00206-17. [PMID: 28202757 DOI: 10.1128/jvi.00206-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
In this study, we describe the construction of the first genetically modified mutant of a halovirus infecting haloalkaliphilic Archaea By random choice, we targeted ORF79, a currently uncharacterized viral gene of the haloalkaliphilic virus ϕCh1. We used a polyethylene glycol (PEG)-mediated transformation method to deliver a disruption cassette into a lysogenic strain of the haloalkaliphilic archaeon Natrialba magadii bearing ϕCh1 as a provirus. This approach yielded mutant virus particles carrying a disrupted version of ORF79. Disruption of ORF79 did not influence morphology of the mature virions. The mutant virus was able to infect cured strains of N. magadii, resulting in a lysogenic, ORF79-disrupted strain. Analysis of this strain carrying the mutant virus revealed a repressor function of ORF79. In the absence of gp79, onset of lysis and expression of viral proteins occurred prematurely compared to their timing in the wild-type strain. Constitutive expression of ORF79 in a cured strain of N. magadii reduced the plating efficiency of ϕCh1 by seven orders of magnitude. Overexpression of ORF79 in a lysogenic strain of N. magadii resulted in an inhibition of lysis and total absence of viral proteins as well as viral progeny. In further experiments, gp79 directly regulated the expression of the tail fiber protein ORF34 but did not influence the methyltransferase gene ORF94. Further, we describe the establishment of an inducible promoter for in vivo studies in N. magadiiIMPORTANCE Genetic analyses of haloalkaliphilic Archaea or haloviruses are only rarely reported. Therefore, only little insight into the in vivo roles of proteins and their functions has been gained so far. We used a reverse genetics approach to identify the function of a yet undescribed gene of ϕCh1. We provide evidence that gp79, a currently unknown protein of ϕCh1, acts as a repressor protein of the viral life cycle, affecting the transition from the lysogenic to the lytic state of the virus. Thus, repressor genes in other haloviruses could be identified by sequence homologies to gp79 in the future. Moreover, we describe the use of an inducible promoter of N. magadii Our work provides valuable tools for the identification of other unknown viral genes by our approach as well as for functional studies of proteins by inducible expression.
Collapse
|
7
|
Luk AWS, Williams TJ, Erdmann S, Papke RT, Cavicchioli R. Viruses of haloarchaea. Life (Basel) 2014; 4:681-715. [PMID: 25402735 PMCID: PMC4284463 DOI: 10.3390/life4040681] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/26/2022] Open
Abstract
In hypersaline environments, haloarchaea (halophilic members of the Archaea) are the dominant organisms, and the viruses that infect them, haloarchaeoviruses are at least ten times more abundant. Since their discovery in 1974, described haloarchaeoviruses include head-tailed, pleomorphic, spherical and spindle-shaped morphologies, representing Myoviridae, Siphoviridae, Podoviridae, Pleolipoviridae, Sphaerolipoviridae and Fuselloviridae families. This review overviews current knowledge of haloarchaeoviruses, providing information about classification, morphotypes, macromolecules, life cycles, genetic manipulation and gene regulation, and host-virus responses. In so doing, the review incorporates knowledge from laboratory studies of isolated viruses, field-based studies of environmental samples, and both genomic and metagenomic analyses of haloarchaeoviruses. What emerges is that some haloarchaeoviruses possess unique morphological and life cycle properties, while others share features with other viruses (e.g., bacteriophages). Their interactions with hosts influence community structure and evolution of populations that exist in hypersaline environments as diverse as seawater evaporation ponds, to hot desert or Antarctic lakes. The discoveries of their wide-ranging and important roles in the ecology and evolution of hypersaline communities serves as a strong motivator for future investigations of both laboratory-model and environmental systems.
Collapse
Affiliation(s)
- Alison W S Luk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - R Thane Papke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA.
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
8
|
Chen S, Wang C, Xu JP, Yang ZL. Molecular characterization of pHRDV1, a new virus-like mobile genetic element closely related to pleomorphic viruses in haloarchaea. Extremophiles 2013; 18:195-206. [PMID: 24374718 DOI: 10.1007/s00792-013-0599-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 11/14/2013] [Indexed: 11/30/2022]
Abstract
A novel haloarchaeal plasmid, pHRDV1 (13,053 bp), was isolated from the haloarchaeal isolate Halorubrum sp. T3. Molecular and bioinformatics analyses showed that this element is a double-stranded circular DNA molecule containing two putative transcripts with opposite directions. The amino acid sequences of six of the nineteen predicted open reading frames were similar to those found in haloarchaeal pleomorphic viruses, such as Halorubrum pleomorphic virus 3 and Halogeometricum pleomorphic virus 1. There was also a strong conservation in gene order between the plasmid and these viruses. All three conserved viral proteins (VPs), which are characteristic of haloarchaeal pleomorphic viruses VP3, VP4 and VP8, were found in pHRDV1. Furthermore, a typical repressor-operator system similar to haloarchaeal myovirus φCh1, was found on the genome of pHRDV1. However, no viral particles were detected in the supernatants of Halorubrum sp. T3, either in the presence or absence of mitomycin C. These results imply that plasmid pHRDV1 is a distinctive virus-like mobile genetic element that harbors some unique properties that make it different from all of the known haloarchaeal plasmids or viruses.
Collapse
Affiliation(s)
- Shaoxing Chen
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China,
| | | | | | | |
Collapse
|
9
|
Utilization of virus φCh1 elements to establish a shuttle vector system for Halo(alkali)philic Archaea via transformation of Natrialba magadii. Appl Environ Microbiol 2013; 79:2741-8. [PMID: 23416999 DOI: 10.1128/aem.03287-12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the study described here, we successfully developed a transformation system for halo(alkali)philic members of the Archaea. This transformation system comprises a series of Natrialba magadii/Escherichia coli shuttle vectors based on a modified method to transform halophilic members of the Archaea and genomic elements of the N. magadii virus Ch1. The shuttle vector pRo-5, based on the repH-containing region of Ch1, stably replicated in E. coli and N. magadii and in several halophilic and haloalkaliphilic members of the Archaea not transformable so far. The Ch1 operon ORF53/ORF54 (repH) was essential for pRo-5 replication and was thus identified as the minimal replication origin. The plasmid allowed homologous and heterologous gene expression, as exemplified by the expression of Ch1 ORF3452, which encodes a structural protein, and the reporter gene bgaH of Haloferax lucentense in N. magadii. The new transformation/vector system will facilitate genetic studies within N. magadii and other haloalkaliphilic archaea and will allow the detailed characterization of the gene functions of N. magadii virus Ch1 in their extreme environments.
Collapse
|
10
|
Zhang Z, Liu Y, Wang S, Yang D, Cheng Y, Hu J, Chen J, Mei Y, Shen P, Bamford DH, Chen X. Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. Virology 2012; 434:233-41. [PMID: 22784791 DOI: 10.1016/j.virol.2012.05.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
A temperate haloarchaeal virus, SNJ1, was induced from the lysogenic host, Natrinema sp. J7-1, with mitomycin C, and the virus produced plaques on lawns of Natrinema sp. J7-2. Optimization of the induction conditions allowed us to increase the titer from ~10(4) PFU/ml to ~10(11) PFU/ml. Single-step growth curves exhibited a burst size of ~100 PFU/cell. The genome of SNJ1 was observed to be a circular, double-stranded DNA (dsDNA) molecule (16,341 bp). Surprisingly, the sequence of SNJ1 was identical to that of a previously described plasmid, pHH205, indicating that this plasmid is the provirus of SNJ1. Several structural protein-encoding genes were identified in the viral genome. In addition, the comparison of putative packaging ATPase sequences from bacterial, archaeal and eukaryotic viruses, as well as the presence of lipid constituents from the host phospholipid pool, strongly suggest that SNJ1 belongs to the PRD1-type lineage of dsDNA viruses, which have an internal membrane.
Collapse
Affiliation(s)
- Ziqian Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Particle assembly and ultrastructural features associated with replication of the lytic archaeal virus sulfolobus turreted icosahedral virus. J Virol 2009; 83:5964-70. [PMID: 19357174 DOI: 10.1128/jvi.02668-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the replication cycle of archaeal viruses. We have investigated the ultrastructural changes of Sulfolobus solfataricus P2 associated with infection by Sulfolobus turreted icosahedral virus (STIV). A time course of a near synchronous STIV infection was analyzed using both scanning and transmission electron microscopy. Assembly of STIV particles, including particles lacking DNA, was observed within cells, and fully assembled STIV particles were visible by 30 h postinfection (hpi). STIV was determined to be a lytic virus, causing cell disruption beginning at 30 hpi. Prior to cell lysis, virus infection resulted in the formation of pyramid-like projections from the cell surface. These projections, which have not been documented in any other host-virus system, appeared to be caused by the protrusion of the cell membrane beyond the bordering S-layer. These structures are thought to be sites at which progeny virus particles are released from infected cells. Based on these observations of lysis, a plaque assay was developed for STIV. From these studies we propose an overall assembly model for STIV.
Collapse
|
12
|
Porter K, Russ BE, Yang J, Dyall-Smith ML. The transcription programme of the protein-primed halovirus SH1. MICROBIOLOGY-SGM 2008; 154:3599-3608. [PMID: 18957612 DOI: 10.1099/mic.0.2008/019422-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SH1 is the only reported isolate of a spherical halovirus, a dominant morphotype in hypersaline lakes. The virus lytically infects the haloarchaeon Haloarcula hispanica, and carries a 30.9 kb linear dsDNA genome that, in a previous study, was proposed to contain 56 protein-coding genes, probably organized into between four and eight operons. In the present study, these predictions were directly tested by determining the orientations and lengths of virus transcripts using systematic RT-PCR and primer extension. Seven major transcripts were observed that together covered most of the genome. Six transcripts were synthesized from early in infection (1 h post-infection; p.i.) onwards, while transcript T6 was only detected late in infection (5-6 h p.i.). No transcripts were detected in the inverted terminal repeat sequences or at the extreme right end of the genome (ORFs 55-56). Start points for the major transcripts were mapped by primer extension and corresponded closely to the 5' termini determined by RT-PCR. Between 1 and 4 h p.i., transcripts usually terminated not far beyond the end of their last coding ORF, but late in infection, transcripts from the same promoters often terminated at more distal points, resulting in much of the genome being transcribed from both strands. Since many of these transcripts are complementary, RNA-RNA interactions are likely, and may play a role in regulating viral gene expression. Puromycin blockage of post-infection protein synthesis significantly altered the levels of certain virus transcripts, indicating that de novo protein synthesis is essential for the correct regulation of SH1 gene expression.
Collapse
Affiliation(s)
- Kate Porter
- Biota Holdings Ltd, 10/585 Blackburn Road, Notting Hill, Victoria 3168, Australia
| | - Brendan E Russ
- Department of Microbiology and Immunology, University of Melbourne, 3052, Australia
| | - Ji Yang
- Department of Microbiology and Immunology, University of Melbourne, 3052, Australia
| | - Michael L Dyall-Smith
- Max-Planck Institute for Biochemistry, Department of Membrane Biochemistry, Martinsried 82152, Germany
| |
Collapse
|