1
|
Kayrav A, Mumcu H, Durmus N, Karaguler NG. Revealing the role of the X25 domains through the characterization of truncated variants of amylopullulanase enzyme from Thermoanaerobacter brockii brockii. Int J Biol Macromol 2024; 270:132404. [PMID: 38754672 DOI: 10.1016/j.ijbiomac.2024.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
To understand the role of the X25 domains of the amylopullulanase enzyme from Thermoanaerobacter brockii brockii (T. brockii brockii), four truncated variants that are TbbApuΔX25-1-SH3 (S130-A1484), TbbApuΔX25-2-SH3 (T235-A1484), TbbApuΔX25-1-CBM20 (S130-P1254), and TbbApuΔX25-2-CBM20 (T235-P1254) were constructed, expressed and characterized together with the SH3 and CBM20 domain truncated variants (TbbApuΔSH3 (V1-A1484) and TbbApuΔCBM20 (V1-P1254). TbbApuΔSH3 showed improved affinity and specificity for both pullulan and soluble starch than full-length TbbApu with lower Km and higher kcat/Km values. It indicates that SH3 is a disposable domain without any effect on the activity and stability of the enzyme. However, TbbApuΔX25-1-SH3, TbbApuΔX25-2-SH3, TbbApuΔX25-1-CBM20, TbbApuΔX25-2-CBM20 (T235-P1254) and TbbApuΔCBM20 showed higher Km and lower kcat/Km values than TbbApuΔSH3 to both soluble starch and pullulan. It specifies that the X25 domains and CBM20 play an important role in both α-amylase and pullulanase activity. Also, it is revealed that while truncation of the CBM20 domain as starch binding domain (SBD) did not affect on raw starch binding ability of the enzyme, truncation of both X25 domains caused almost complete loss of the raw starch binding ability of the enzyme. All these results enlightened the function of the X25 domains that play a more crucial role than CBM20 in the enzyme's binding to raw starch and also play a crucial role in its activity.
Collapse
Affiliation(s)
- Aycan Kayrav
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Hande Mumcu
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Naciye Durmus
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Nevin Gul Karaguler
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye.
| |
Collapse
|
2
|
Abstract
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III). Generally, these enzymes hydrolyse the α-1,6 glucosidic bonds (and α-1,4 for certain enzyme groups) of substrates and form reducing sugars such as glucose, maltose, maltotriose, panose or isopanose. This review covers two main aspects: (i) bibliometric analysis of publications and patents related to pullulan-degrading enzymes and (ii) biological aspects of free and immobilised pullulan-degrading enzymes and protein engineering. The collective data suggest that most publications involved researchers within the same institution or country in the past and current practice. Multi-national interaction shall be improved, especially in tapping the enzymes from unculturable prokaryotes. While the understanding of pullulanases may reach a certain extend of saturation, the discovery of pullulan hydrolases is still limited. In this report, we suggest readers consider using the next-generation sequencing technique to fill the gaps of finding more new sequences encoding pullulan-degrading enzymes to expand the knowledge body of this topic.
Collapse
|
3
|
Akassou M, Groleau D. Advances and challenges in the production of extracellular thermoduric pullulanases by wild-type and recombinant microorganisms: a review. Crit Rev Biotechnol 2019; 39:337-350. [PMID: 30700157 DOI: 10.1080/07388551.2019.1566202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thermoduric pullulanases, acting as starch-debranching enzymes, are required in many industrial applications, mainly in the production of concentrated glucose, maltose, and fructose syrups. To date, however, a single pullulanase, from Bacillus acidopullulyticus, is available on the market for industrial purposes. This review is an investigation of the major advances as well as the major challenges being faced with regard to optimization of the production of extracellular thermoduric pullulanases either by their original hosts or by recombinant organisms. The critical aspects linked to industrial pullulanase production, which should always be considered, are emphasized, including those parameters influencing solubility, thermostability, and catalytic efficiency of the enzyme. This review provides new insights for improving the production of extracellular thermoduric pullulanases in the hope that such information may facilitate their commercial utilization and potentially be applied to the development of other industrially relevant enzymes.
Collapse
Affiliation(s)
- Mounia Akassou
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| | - Denis Groleau
- a Department of Chemical Engineering and Biotechnological Engineering , Faculty of Engineering, University of Sherbrooke , Sherbrooke , Canada
| |
Collapse
|
4
|
Biochemical characterization of halophilic, alkalithermophilic amylopullulanase PulD7 and truncated amylopullulanases PulD7ΔN and PulD7ΔC. Int J Biol Macromol 2018; 111:632-638. [DOI: 10.1016/j.ijbiomac.2018.01.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 01/13/2023]
|
5
|
Valk V, Kaaij RMVD, Dijkhuizen L. The evolutionary origin and possible functional roles of FNIII domains in two Microbacterium aurum B8.A granular starch degrading enzymes, and in other carbohydrate acting enzymes. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/amylase-2017-0001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractFibronectin type III (FNIII) domains were first identified in the eukaryotic plasma protein fibronectin, where they act as structural spacers or enable protein-protein interactions. Recently we characterized two large and multi-domain amylases in Microbacterium aurum B8.A that both carry multiple FNIII and carbohydrate binding modules (CBMs). The role of (multiple) FNIII domains in such carbohydrate acting enzymes is currently unclear. Four hypothetical functions are considered here: a substrate surface disruption domain, a carbohydrate binding module, as a stable linker, or enabling protein-protein interactions. We performed a phylogenetic analysis of all FNIII domains identified in proteins listed in the CAZy database. These data clearly show that the FNIII domains in eukaryotic and archaeal CAZy proteins are of bacterial origin and also provides examples of interkingdom gene transfer from Bacteria to Archaea and Eucarya. FNIII domains occur in a wide variety of CAZy enzymes acting on many different substrates, suggesting that they have a non-specific role in these proteins. While CBM domains are mostly found at protein termini, FNIII domains are commonly located between other protein domains. FNIII domains in carbohydrate acting enzymes thus may function mainly as stable linkers to allow optimal positioning and/or flexibility of the catalytic domain and other domains, such as CBM.
Collapse
|
6
|
Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13_42 with an unusual, multi-domain organization. Sci Rep 2016; 6:36100. [PMID: 27808246 PMCID: PMC5093618 DOI: 10.1038/srep36100] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/10/2016] [Indexed: 11/09/2022] Open
Abstract
The bacterium Microbacterium aurum strain B8.A degrades granular starches, using the multi-domain MaAmyA α-amylase to initiate granule degradation through pore formation. This paper reports the characterization of the M. aurum B8.A MaAmyB enzyme, a second starch-acting enzyme with multiple FNIII and CBM25 domains. MaAmyB was characterized as an α-glucan 1,4-α-maltohexaosidase with the ability to subsequently hydrolyze maltohexaose to maltose through the release of glucose. MaAmyB also displays exo-activity with a double blocked PNPG7 substrate, releasing PNP. In M. aurum B8.A, MaAmyB may contribute to degradation of starch granules by rapidly hydrolyzing the helical and linear starch chains that become exposed after pore formation by MaAmyA. Bioinformatics analysis showed that MaAmyB represents a novel GH13 subfamily, designated GH13_42, currently with 165 members, all in Gram-positive soil dwelling bacteria, mostly Streptomyces. All members have an unusually large catalytic domain (AB-regions), due to three insertions compared to established α-amylases, and an aberrant C-region, which has only 30% identity to established GH13 C-regions. Most GH13_42 members have three N-terminal domains (2 CBM25 and 1 FNIII). This is unusual as starch binding domains are commonly found at the C-termini of α-amylases. The evolution of the multi-domain M. aurum B8.A MaAmyA and MaAmyB enzymes is discussed.
Collapse
|
7
|
Oh IN, Jane JL, Wang K, Park JT, Park KH. Novel characteristics of a carbohydrate-binding module 20 from hyperthermophilic bacterium. Extremophiles 2015; 19:363-71. [DOI: 10.1007/s00792-014-0722-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
8
|
Xu J, Ren F, Huang CH, Zheng Y, Zhen J, Sun H, Ko TP, He M, Chen CC, Chan HC, Guo RT, Song H, Ma Y. Functional and structural studies of pullulanase from Anoxybacillus
sp. LM18-11. Proteins 2014; 82:1685-93. [DOI: 10.1002/prot.24498] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 11/18/2013] [Accepted: 12/09/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Jianyong Xu
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Feifei Ren
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Yingying Zheng
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Jie Zhen
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Hong Sun
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica; Taipei 11529 Taiwan
| | - Miao He
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Hsiu-Chien Chan
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Hui Song
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| | - Yanhe Ma
- Industrial Enzymes National Engineering Laboratory; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; Tianjin 300308 China
| |
Collapse
|
9
|
Han T, Zeng F, Li Z, Liu L, Wei M, Guan Q, Liang X, Peng Z, Liu M, Qin J, Zhang S, Jia B. Biochemical characterization of a recombinant pullulanase from Thermococcus kodakarensis
KOD1. Lett Appl Microbiol 2013; 57:336-43. [DOI: 10.1111/lam.12118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/10/2013] [Accepted: 06/10/2013] [Indexed: 11/27/2022]
Affiliation(s)
- T. Han
- College of Plant Sciences; Jilin University; Changchun China
| | - F. Zeng
- College of Plant Sciences; Jilin University; Changchun China
| | - Z. Li
- College of Plant Sciences; Jilin University; Changchun China
| | - L. Liu
- College of Plant Sciences; Jilin University; Changchun China
| | - M. Wei
- College of Plant Sciences; Jilin University; Changchun China
| | - Q. Guan
- College of Plant Sciences; Jilin University; Changchun China
| | - X. Liang
- College of Plant Sciences; Jilin University; Changchun China
| | - Z. Peng
- College of Plant Sciences; Jilin University; Changchun China
| | - M. Liu
- College of Plant Sciences; Jilin University; Changchun China
| | - J. Qin
- College of Plant Sciences; Jilin University; Changchun China
| | - S. Zhang
- College of Plant Sciences; Jilin University; Changchun China
| | - B. Jia
- College of Plant Sciences; Jilin University; Changchun China
| |
Collapse
|
10
|
Guan Q, Guo X, Han T, Wei M, Jin M, Zeng F, Liu L, Li Z, Wang Y, Cheong GW, Zhang S, Jia B. Cloning, purification and biochemical characterisation of an organic solvent-, detergent-, and thermo-stable amylopullulanase from Thermococcus kodakarensis KOD1. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|