1
|
Sharma M, Dwivedi P, Joshi V, Singh P. Novel mutations found in Mycobacterium leprae DNA repair gene nth from central India. J Infect Chemother 2024; 30:531-535. [PMID: 38141720 DOI: 10.1016/j.jiac.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION The importance of DNA repair enzymes in maintaining genomic integrity is highlighted by the hypothesis that DNA damage by reactive oxygen/nitrogen species produced inside the host cell is essential for the mutagenesis process. Endonuclease III (Nth), formamidopyrimide (Fpg) and endonuclease VIII (Nei) DNA glycosylases are essential components of the bacterial base excision repair process. Mycobacterium leprae lost both fpg/nei genes during the reductive evolution event and only has the nth (ML2301) gene. This study aims to characterize the mutations in the nth gene of M. leprae strains and explore its correlation with drug-resistance. METHOD A total of 91 M. leprae positive DNA samples extracted from skin biopsy samples of newly diagnosed leprosy patients from NSCB Hospital Jabalpur were assessed for the nth gene as well as drug resistance-associated loci of the rpoB, gyrA and folP1 genes through PCR followed by Sanger sequencing. RESULTS Of these 91 patients, a total of two insertion frameshift mutations, two synonymous and seven nonsynonymous mutations were found in nth in seven samples. Sixteen samples were found to be resistant to ofloxacin and one was found to be dapsone resistant as per the known DRDR mutations. No mutations were found in the rpoB region. Interestingly, none of the nth mutations were identified in the drug-resistant associated samples. CONCLUSION The in-silico structural analysis of the non-synonymous mutations in the Nth predicted five of them were to be deleterious. Our results suggest that the mutations in the nth gene may be potential markers for phylogenetic and epidemiological studies.
Collapse
Affiliation(s)
- Mukul Sharma
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| | - Purna Dwivedi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Vandana Joshi
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India; School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Pushpendra Singh
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India.
| |
Collapse
|
2
|
Rollo F, Martins GD, Gouveia AG, Ithurbide S, Servant P, Romão CV, Moe E. Insights into the role of three Endonuclease III enzymes for oxidative stress resistance in the extremely radiation resistant bacterium Deinococcus radiodurans. Front Microbiol 2023; 14:1266785. [PMID: 37771704 PMCID: PMC10523315 DOI: 10.3389/fmicb.2023.1266785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
The extremely radiation and desiccation resistant bacterium Deinococcus radiodurans possesses three genes encoding Endonuclease III-like enzymes (DrEndoIII1, DrEndoIII2, DrEndoIII3). In vitro enzymatic activity measurements revealed that DrEndoIII2 is the main Endonuclease III in this organism, while DrEndoIII1 and 3 possess unusual and, so far, no detectable EndoIII activity, respectively. In order to understand the role of these enzymes at a cellular level, DrEndoIII knockout mutants were constructed and subjected to various oxidative stress related conditions. The results showed that the mutants are as resistant to ionizing and UV-C radiation as well as H2O2 exposure as the wild type. However, upon exposure to oxidative stress induced by methyl viologen, the knockout strains were more resistant than the wild type. The difference in resistance may be attributed to the observed upregulation of the EndoIII homologs gene expression upon addition of methyl viologen. In conclusion, our data suggest that all three EndoIII homologs are crucial for cell survival in stress conditions, since the knockout of one of the genes tend to be compensated for by overexpression of the genes encoding the other two.
Collapse
Affiliation(s)
- Filipe Rollo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Guilherme D. Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - André G. Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Solenne Ithurbide
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif sur Yvette, France
| | - Célia V. Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
- Department of Chemistry, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Li J, Yang Y, Chang C, Cao W. DR0022 from Deinococcus radiodurans is an acid uracil-DNA glycosylase. FEBS J 2022; 289:6420-6434. [PMID: 35607831 PMCID: PMC9796141 DOI: 10.1111/febs.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 01/02/2023]
Abstract
Uracil-DNA glycosylase (UDG) initiates base excision repair (BER) by removing damaged or modified nucleobases during DNA repair or mammalian demethylation. The UDG superfamily consists of at least six families with a variety of catalytic specificities and functions. Deinococcus radiodurans, an extreme radiation resistant bacterium, contains multiple members of UDG enzymes within its genome. The present study reveals that the putative protein, DR0022, is a uracil-DNA glycosylase that requires acidic conditions for its glycosylase activity, which is the first case of such an enzyme within the UDG superfamily. The key residues in the catalytic motifs are investigated by biochemical, enzyme kinetics, and de novo structural prediction, as well as molecular modeling analyses. The structural and catalytic roles of several distinct residues are discussed in light of predicted and modeled DR0022 glycosylase structures. The spontaneous mutation rate analysis performed in a dr0022 deficient D. radiodurans strain indicated that the dr0022 gene plays a role in mutation prevention. Furthermore, survival rate analysis in a dr0022 deficient D. radiodurans strain demonstrated its role in stress resistance, including γ-irradiation. Additionally, the novel acid UDG activity in relationship to its in vivo roles is discussed. This work underscores the functional diversity in the UDG superfamily.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Ye Yang
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Chenyan Chang
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Weiguo Cao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
4
|
Cheng K, Xu Y, Chen X, Lu H, He Y, Wang L, Hua Y. Participation of RecJ in the base excision repair pathway of Deinococcus radiodurans. Nucleic Acids Res 2020; 48:9859-9871. [PMID: 32870272 PMCID: PMC7515722 DOI: 10.1093/nar/gkaa714] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/03/2022] Open
Abstract
RecJ reportedly participates in the base excision repair (BER) pathway, but structural and functional data are scarce. Herein, the Deinococcus radiodurans RecJ (drRecJ) deletion strain exhibited extreme sensitivity to hydrogen peroxide and methyl-methanesulphonate, as well as a high spontaneous mutation rate and an accumulation of unrepaired abasic sites in vivo, indicating the involvement of drRecJ in the BER pathway. The binding affinity and nuclease activity preference of drRecJ toward DNA substrates containing a 5'-P-dSpacer group, a 5'-deoxyribose-phosphate (dRP) mimic, were established. A 1.9 Å structure of drRecJ in complex with 5'-P-dSpacer-modified single-stranded DNA (ssDNA) revealed a 5'-monophosphate binding pocket and occupancy of 5'-dRP in the drRecJ nuclease core. The mechanism for RecJ 5'-dRP catalysis was explored using structural and biochemical data, and the results implied that drRecJ is not a canonical 5'-dRP lyase. Furthermore, in vitro reconstitution assays indicated that drRecJ tends to participate in the long-patch BER pathway rather than the short-patch BER pathway.
Collapse
Affiliation(s)
- Kaiying Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Ying Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Xuanyi Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Yuan He
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, China
| |
Collapse
|
5
|
He Y, Wang Y, Qin C, Xu Y, Cheng K, Xu H, Tian B, Zhao Y, Wang L, Hua Y. Structural and Functional Characterization of a Unique AP Endonuclease From Deinococcus radiodurans. Front Microbiol 2020; 11:1178. [PMID: 33117296 PMCID: PMC7548837 DOI: 10.3389/fmicb.2020.01178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Various endogenous and exogenous agents cause DNA damage, including apurinic/apyrimidinic (AP) sites. Due to their cytotoxic effects, AP sites are usually cleaved by AP endonuclease through the base excision repair (BER) pathway. Deinococcus radiodurans, an extraordinary radiation-resistant bacterium, is known as an ideal model organism for elucidating DNA repair processes. Here, we have investigated a unique AP endonuclease (DrXth) from D. radiodurans and found that it possesses AP endonuclease, 3'-phosphodiesterase, 3'-phosphatase, and 3'-5' exonuclease but has no nucleotide incision repair (NIR) activity. We also found that Mg2+ and Mn2+ were the preferred divalent metals for endonuclease and exonuclease activities, respectively. In addition, DrXth were crystallized and the crystals diffracted to 1.5 Å. Structural and biochemical analyses demonstrated that residue Gly198 is the key residue involved in the substrate DNA binding and cleavage. Deletion of the drxth gene in D. radiodurans caused elevated sensitivity to DNA damage agents and increased spontaneous mutation frequency. Overall, our results indicate that DrXth is an important AP endonuclease involved in BER pathway and functions in conjunction with other DNA repair enzymes to maintain the genome stability.
Collapse
Affiliation(s)
- Yuan He
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Yiyi Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Chen Qin
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Ying Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Kaiying Cheng
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Institute of Biophysics, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Zhou H, Zhang L, Xu Q, Zhang L, Yu Y, Hua X. The mismatch repair system (mutS and mutL) in Acinetobacter baylyi ADP1. BMC Microbiol 2020; 20:40. [PMID: 32111158 PMCID: PMC7048072 DOI: 10.1186/s12866-020-01729-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Acinetobacter baylyi ADP1 is an ideal bacterial strain for high-throughput genetic analysis as the bacterium is naturally transformable. Thus, ADP1 can be used to investigate DNA mismatch repair, a mechanism for repairing mismatched bases. We used the mutS deletion mutant (XH439) and mutL deletion mutant (XH440), and constructed a mutS mutL double deletion mutant (XH441) to investigate the role of the mismatch repair system in A. baylyi. Results We determined the survival rates after UV irradiation and measured the mutation frequencies, rates and spectra of wild-type ADP1 and mutSL mutant via rifampin resistance assay (RifR assay) and experimental evolution. In addition, transformation efficiencies of genomic DNA in ADP1 and its three mutants were determined. Lastly, the relative growth rates of the wild type strain, three constructed deletion mutants, as well as the rifampin resistant mutants obtained from RifR assays, were measured. All three mutants had higher survival rates after UV irradiation than wild type, especially the double deletion mutant. Three mutants showed higher mutation frequencies than ADP1 and favored transition mutations in RifR assay. All three mutants showed increased mutation rates in the experimental evolution. However, only XH439 and XH441 had higher mutation rates than the wild type strain in RifR assay. XH441 showed higher transformation efficiency than XH438 when donor DNA harbored transition mutations. All three mutants showed higher growth rates than wild-type, and these four strains displayed higher growth rates than almost all their rpoB mutants. The growth rate results showed different amino acid mutations in rpoB resulted in different extents of reduction in the fitness of rifampin resistant mutants. However, the fitness cost brought by the same mutation did not vary with strain background. Conclusions We demonstrated that inactivation of both mutS and mutL increased the mutation rates and frequencies in A. baylyi, which would contribute to the evolution and acquirement of rifampicin resistance. The mutS deletion is also implicated in increased mutation rates and frequencies, suggesting that MutL may be activated even in the absence of mutS. The correlation between fitness cost and rifampin resistance mutations in A. baylyi is firstly established.
Collapse
Affiliation(s)
- Hua Zhou
- Department of Respiratory Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Qingye Xu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Linghong Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Sarre A, Stelter M, Rollo F, De Bonis S, Seck A, Hognon C, Ravanat JL, Monari A, Dehez F, Moe E, Timmins J. The three Endonuclease III variants of Deinococcus radiodurans possess distinct and complementary DNA repair activities. DNA Repair (Amst) 2019; 78:45-59. [DOI: 10.1016/j.dnarep.2019.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
|
8
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
9
|
Maurya GK, Misra HS. Plasmids for making multiple knockouts in a radioresistant bacterium Deinococcus radiodurans. Plasmid 2018; 100:6-13. [PMID: 30261215 DOI: 10.1016/j.plasmid.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/28/2018] [Accepted: 09/07/2018] [Indexed: 11/26/2022]
Abstract
The gene knockouts are mostly created using homologous recombination-based replacement of target gene(s) with the expressing cassette of selection marker gene(s). Here, we constructed a series of plasmids bearing the expressing cassettes of genes encoding different antibiotics markers like nptII (KanR), aadA (SpecR), cat (CmR) and aac(3) (GenR). D. radiodurans is a radioresistant Gram positive bacterium that does not support the independent maintenance of colE1 origin-based plasmids. Using these constructs, the disruption mutants of both single and multiple genes involved in segregation of secondary genome elements have been generated in this bacterium. Unlike single mutants, the double and triple mutants showed growth retardation under normal growth conditions and the synergistic effects with Topoisomerase II inhibitor on the growth of this bacterium. Thus, these plasmids could be useful in creating multiple deletions/disruptions in bacteria that do not support independent maintenance of colE1 origin-based plasmid.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
10
|
The contribution of Nth and Nei DNA glycosylases to mutagenesis in Mycobacterium smegmatis. DNA Repair (Amst) 2013; 13:32-41. [PMID: 24342191 DOI: 10.1016/j.dnarep.2013.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 11/20/2022]
Abstract
The increased prevalence of drug resistant strains of Mycobacterium tuberculosis (Mtb) indicates that significant mutagenesis occurs during tuberculosis disease in humans. DNA damage by host-derived reactive oxygen/nitrogen species is hypothesized to be critical for the mutagenic process in Mtb thus, highlighting an important role for DNA repair enzymes in maintenance of genome fidelity. Formamidopyrimidine (Fpg/MutM/Fapy) and EndonucleaseVIII (Nei) constitute the Fpg/Nei family of DNA glycosylases and together with EndonucleaseIII (Nth) are central to the base excision repair pathway in bacteria. In this study we assess the contribution of Nei and Nth DNA repair enzymes in Mycobacterium smegmatis (Msm), which retains a single nth homologue and duplications of the Fpg (fpg1 and fpg2) and Nei (nei1 and nei2) homologues. Using an Escherichia coli nth deletion mutant, we confirm the functionality of the mycobacterial nth gene in the base excision repair pathway. Msm mutants lacking nei1, nei2 and nth individually or in combination did not display aberrant growth in broth culture. Deletion of nth individually results in increased UV-induced mutagenesis and combinatorial deletion with the nei homologues results in reduced survival under oxidative stress conditions and an increase in spontaneous mutagenesis to rifampicin. Deletion of nth together with the fpg homolgues did not result in any growth/survival defects or changes in mutation rate. Furthermore, no differential emergence of the common rifampicin resistance conferring genotypes were noted. Collectively, these data confirm a role for Nth in base excision repair in mycobacteria and further highlight a novel interplay between the Nth and Nei homologues in spontaneous mutagenesis.
Collapse
|