1
|
Uehara R, Dan N, Amesaka H, Yoshizawa T, Koga Y, Kanaya S, Takano K, Matsumura H, Tanaka SI. Insertion loop-mediated folding propagation governs efficient maturation of hyperthermophilic Tk-subtilisin at high temperatures. FEBS Lett 2020; 595:452-461. [PMID: 33314039 DOI: 10.1002/1873-3468.14028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/05/2022]
Abstract
The serine protease Tk-subtilisin from the hyperthermophilic archaeon Thermococcus kodakarensis possesses three insertion loops (IS1-IS3) on its surface, as compared to its mesophilic counterparts. Although IS1 and IS2 are required for maturation of Tk-subtilisin at high temperatures, the role of IS3 remains unknown. Here, CD spectroscopy revealed that IS3 deletion arrested Tk-subtilisin folding at an intermediate state, in which the central nucleus was formed, but the subsequent folding propagation into terminal subdomains did not occur. Alanine substitution of the aspartate residue in IS3 disturbed the intraloop hydrogen-bonding network, as evidenced by crystallographic analysis, resulting in compromised folding at high temperatures. Taking into account the high conservation of IS3 across hyperthermophilic homologues, we propose that the presence of IS3 is important for folding of hyperthermophilic subtilisins in high-temperature environments.
Collapse
Affiliation(s)
- Ryo Uehara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Shiga, Japan.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan.,Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Nanako Dan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Hiroshi Amesaka
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Shiga, Japan.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan
| | - Shun-Ichi Tanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Shiga, Japan.,Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Shiga, Japan.,Department of Biomolecular Chemistry, Kyoto Prefectural University, Japan
| |
Collapse
|
2
|
Uehara R, Angkawidjaja C, Koga Y, Kanaya S. Formation of the High-Affinity Calcium Binding Site in Pro-subtilisin E with the Insertion Sequence IS1 of Pro-Tk-subtilisin. Biochemistry 2013; 52:9080-8. [DOI: 10.1021/bi401342k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Uehara
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Clement Angkawidjaja
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- International
College, Osaka University, 1-30 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuichi Koga
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department
of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Yuzaki K, Sanda Y, You DJ, Uehara R, Koga Y, Kanaya S. Increase in activation rate of Pro-Tk-subtilisin by a single nonpolar-to-polar amino acid substitution at the hydrophobic core of the propeptide domain. Protein Sci 2013; 22:1711-21. [PMID: 24115021 DOI: 10.1002/pro.2371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/03/2013] [Indexed: 11/07/2022]
Abstract
Tk-subtilisin (Gly70-Gly398) is a subtilisin homolog from Thermococcus kodakarensis. Active Tk-subtilisin is produced from its inactive precursor, Pro-Tk-subtilisin (Gly1-Gly398), by autoprocessing and degradation of the propeptide (Tk-propeptide, Gly1-Leu69). This activation process is extremely slow at moderate temperatures owing to high stability of Tk-propeptide. Tk-propeptide is stabilized by the hydrophobic core. To examine whether a single nonpolar-to-polar amino acid substitution at this core affects the activation rate of Pro-Tk-subtilisin, the Pro-Tk-subtilisin derivative with the Phe17 → His mutation (Pro-F17H), Tk-propeptide derivative with the same mutation (F17H-propeptide), and two active-site mutants of Pro-F17H (Pro-F17H/S324A and Pro-F17H/S324C) were constructed. The crystal structure of Pro-F17H/S324A was nearly identical to that of Pro-S324A, indicating that the mutation does not affect the structure of Pro-Tk-subtilisin. The refolding rate of Pro-F17H/S324A and autoprocessing rate of Pro-F17H/S324C were also nearly identical to those of their parent proteins (Pro-S324A and Pro-S324C). However, the activation rate of Pro-F17H greatly increased when compared with that of Pro-Tk-subtilisin, such that Pro-F17H is efficiently activated even at 40°C. The far-UV circular dichroism spectrum of F17H-propeptide did not exhibit a broad trough at 205-230 nm, which is observed in the spectrum of Tk-propeptide. F17H-propeptide is more susceptible to chymotryptic degradation than Tk-propeptide. These results suggest that F17H-propeptide is unfolded in an isolated form and is therefore rapidly degraded by Tk-subtilisin. Thus, destabilization of the hydrophobic core of Tk-propeptide by a nonpolar-to-polar amino acid substitution is an effective way to increase the activation rate of Pro-Tk-subtilisin.
Collapse
Affiliation(s)
- Kota Yuzaki
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Uehara R, Ueda Y, You D, Koga Y, Kanaya S. Accelerated maturation of Tk‐subtilisin by a
L
eu→
P
romutation at the
C
‐terminus of the propeptide, which reduces the binding of the propeptide to
T
k‐subtilisin. FEBS J 2013; 280:994-1006. [DOI: 10.1111/febs.12091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023]
Affiliation(s)
- Ryo Uehara
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| | - Yasunori Ueda
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| | - Dong‐Ju You
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| | - Yuichi Koga
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| | - Shigenori Kanaya
- Department of Material and Life Science Graduate School of Engineering Osaka University Japan
| |
Collapse
|