Curing the Megaplasmid pTT27 from Thermus thermophilus HB27 and Maintaining Exogenous Plasmids in the Plasmid-Free Strain.
Appl Environ Microbiol 2015;
82:1537-48. [PMID:
26712540 DOI:
10.1128/aem.03603-15]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Stepwise deletions in the only plasmid in Thermus thermophilus HB27, megaplasmid pTT27, showed that two distantly located loci were important for maintenance of the plasmid. One is a minimum replicon including one gene, repT, coding a replication initiator, and the other encodes subunits of class I ribonucleotide reductase (RNR) for deoxynucleoside triphosphate (dNTP) synthesis. Since the initiator protein, RepT, bound to direct repeats downstream from its own gene, it was speculated that a more-downstream A+T-rich region, which was critical for replication ability, could be unwound for replication initiation. On the other hand, the class I RNR is not necessarily essential for cell growth, as evidenced by the generation of the plasmid-free strain by the loss of pTT27. However, the plasmid-free strain culture has fewer viable cells than the wild-type culture, probably due to a dNTP pool imbalance in the cell. This is because of the introduction of the class I RNR genes or the supplementation of 5'-deoxyadenosylcobalamin, which stimulated class II RNR encoded in the chromosome, resolved the decrease in the number of viable cells in the plasmid-free strain. Likewise, these treatments dramatically enhanced the efficiency of transformation by exogenous plasmids and the stability of the plasmids in the strain. Therefore, the class I RNR would enable the stable maintenance of plasmids, including pTT27, as a result of genome replication normalized by reversing the dNTP pool imbalance. The generation of this plasmid-free strain with great natural competence and its analysis in regard to exogenous plasmid maintenance will expand the availability of HB27 for thermophilic cell factories.
Collapse