1
|
Barranger A, Heude-Berthelin C, Rouxel J, Adeline B, Benabdelmouna A, Burgeot T, Akcha F. Parental exposure to the herbicide diuron results in oxidative DNA damage to germinal cells of the Pacific oyster Crassostrea gigas. Comp Biochem Physiol C Toxicol Pharmacol 2016; 180:23-30. [PMID: 26610786 DOI: 10.1016/j.cbpc.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 01/23/2023]
Abstract
Chemical pollution by pesticides has been identified as a possible contributing factor to the massive mortality outbreaks observed in Crassostrea gigas for several years. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to the herbicide diuron at environmental concentrations during gametogenesis. This trans-generational effect occurs through damage to genitor-exposed gametes, as measured by the comet-assay. The presence of DNA damage in gametes could be linked to the formation of DNA damage in other germ cells. In order to explore this question, the levels and cell distribution of the oxidized base lesion 8-oxodGuo were studied in the gonads of exposed genitors. High-performance liquid chromatography coupled with UV and electrochemical detection analysis showed an increase in 8-oxodGuo levels in both male and female gonads after exposure to diuron. Immunohistochemistry analysis showed the presence of 8-oxodGuo at all stages of male germ cells, from early to mature stages. Conversely, the oxidized base was only present in early germ cell stages in female gonads. These results indicate that male and female genitors underwent oxidative stress following exposure to diuron, resulting in DNA oxidation in both early germ cells and gametes, such as spermatozoa, which could explain the transmission of diuron-induced DNA damage to offspring. Furthermore, immunostaining of early germ cells seems indicates that damages caused by exposure to diuron on germ line not only affect the current sexual cycle but also could affect future gametogenesis.
Collapse
Affiliation(s)
- Audrey Barranger
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France; Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France.
| | - Clothilde Heude-Berthelin
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Université de Caen Basse-Normandie, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, CNRS, IRD, 57 Rue Cuvier, 75005 Paris, France
| | - Julien Rouxel
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Béatrice Adeline
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Université de Caen Basse-Normandie, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, CNRS, IRD, 57 Rue Cuvier, 75005 Paris, France
| | - Abdellah Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| | - Thierry Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|