1
|
Chao L, Yang Y. Elucidation of Expression Patterns and Functional Properties of Archaerhodopsin Derived from Halorubrum sp. Ejinoor. BIOLOGY 2025; 14:360. [PMID: 40282225 PMCID: PMC12025097 DOI: 10.3390/biology14040360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
This study elucidates the structural determinants and optogenetic potential of Archaerhodopsin HeAR, a proton pump from Halorubrum sp. Ejinoor isolated from Inner Mongolian salt lakes. Through heterologous expression in E. coli BL21 (DE3) and integrative biophysical analyses, we demonstrate that HeAR adopts a stable trimeric architecture (129 kDa) with detergent-binding characteristics mirroring bacteriorhodopsin (BR); however, it exhibits a 10 nm bathochromic spectral shift (λmax = 550 nm) and elevated proton affinity (Asp-95 pKa = 3.5 vs. BR Asp-85 pKa = 2.6), indicative of evolutionary optimization in its retinal-binding electrostatic microenvironment. Kinetic profiling reveals HeAR's prolonged photocycle (100 ms vs. BR's 11 ms), marked by rapid M-state decay (3.3 ms) and extended dark-adaptation half-life (160 min), a bistable behavior attributed to enhanced hydrogen bond persistence (80%) and reduced conformational entropy (RMSD = 2.0 Å). Functional assays confirm light-driven proton extrusion (0.1 ng H⁺/mg·s) with DCCD-amplified flux (0.3 ng H⁺/mg·s) and ATP synthesis (0.3 nmol/mg·s), underscoring its synergy with H⁺-ATPase. Phylogenetic and structural analyses reveal 95% homology with Halorubrum AR4 and conservation of 11 proton-wire residues, despite divergent Trp/Tyr/Ser networks that redefine chromophore stabilization. AlphaFold-predicted models (TM-score > 0.92) and molecular docking identify superior retinoid-binding affinity (ΔG = -12.27 kcal/mol), while spectral specificity (550-560 nm) and acid-stable photoresponse highlight its adaptability for low-irradiance neuromodulation. These findings position HeAR as a precision optogenetic tool, circumventing spectral overlap with excitatory opsins and enabling sustained hyperpolarization with minimized phototoxicity. By bridging microbial energetics and optobioengineering, this work expands the archaeal rhodopsin toolkit and provides a blueprint for designing wavelength-optimized photoregulatory systems.
Collapse
Affiliation(s)
- Luomeng Chao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, China;
| | - Yuxia Yang
- College of Computer Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, China
| |
Collapse
|
2
|
Takagi M, Nagatani A, Kawano K, Hata A, Yokoyama A, Hayashida K, Hoshi H, Sakurai M, Oyama T, Kuroda Y, Yamaoka Y, Fujiwara T, Miyanoiri Y, Hoshino M, Yano Y, Takasu K, Matsuzaki K. Stable and Minimum Size Solubilization of Membrane Proteins with Cocktails of Phospholipid Analogues. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63358-63367. [PMID: 39509591 DOI: 10.1021/acsami.4c15697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Membrane proteins (MPs) play important roles in various cellular processes and are major targets for drugs. Solubilization of MPs is often needed for structural and biophysical studies. For high-resolution nuclear magnetic resonance measurements, there is a size limit of the sample (<100 kDa), and a high thermal stability at an increased temperature is required. Furthermore, lipid bilayer-like environments are desirable to preserve the native states of MPs. However, existing solubilization techniques do not fulfill these requirements at the same time. In this study, we combined two phospholipid analogues as a solubilizer and stabilizer to isolate MPs. This method maintained bacteriorhodopsin (bR) extracted from purple membranes in its native state for 7 d at 40 °C. The solubility was comparable to that of conventional detergents for MPs, and the thermal stability of the solubilizate was the best among them. The increase in the molecular size caused by the solubilization of bR was only 20 kDa, indicating that 20 phospholipid analogue molecules were sufficient to solubilize one bR molecule. 15N-1H heteronuclear single quantum coherence spectra of solubilized 2H- and 15N-labeled bR gave ∼80% of the expected peaks. In addition, the lysate of human neuropeptide Y2 receptor-expressing mammalian cells exhibited ligand recognition for 7 d at 37 °C, suggesting that this technique can be used for ligand screening. Moreover, the structure of the single membrane-spanning M2 protein of the influenza A virus expressed in Escherichia coli was stably maintained for 7 d at 40 °C. Thus, our method is promising for various MP studies.
Collapse
Affiliation(s)
- Mai Takagi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ayana Nagatani
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Ayami Hata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Azusa Yokoyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Koichi Hayashida
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Haruka Hoshi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Mao Sakurai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Tsuyoshi Oyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yusuke Kuroda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yousuke Yamaoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- School of Pharmacy, Hyogo Medical University, Kobe 650-8530, Japan
| | - Takahiro Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Miyanoiri
- Research Center for Next-Generation Protein Sciences, Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Masaru Hoshino
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya 663-8179, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Leighton RE, Frontiera RR. Quantifying Bacteriorhodopsin Activity as a Function of its Local Environment with a Raman-Based Assay. J Phys Chem B 2023; 127:8833-8841. [PMID: 37812499 DOI: 10.1021/acs.jpcb.3c04802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Bacteriorhodopsin (bR) is a transmembrane protein that functions as a light-driven proton pump in halophilic archaea. The bR photocycle has been well-characterized; however, these measurements almost exclusively measured purified bR, outside of its native membrane. To investigate what effect the cellular environment has on the bR photocycle, we have developed a Raman-based assay that can monitor the activity of the bR in a variety of conditions, including in its native membrane. The assay uses two continuous-wave lasers, one to initiate photochemistry and one to monitor bR activity. The excitation leads to the steady-state depletion of ground-state bR, which directly relates to the population of photocycle intermediate states. We have used this assay to monitor bR activity both in vitro and in vivo. Our in vitro measurements confirm that our assay is sensitive to bulk environmental changes reported in the literature. Our in vivo measurements show a decrease in bR activity with increasing extracellular pH for bR in its native membrane. The difference in activity with increasing pH indicates that the native membrane environment affects the function of bR. This assay opens the door to future measurements into understanding how the local environment of this transmembrane protein affects function.
Collapse
Affiliation(s)
- Ryan E Leighton
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Renee R Frontiera
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Halobacterium salinarum NRC-1 Sustains Voltage Production in a Dual-Chambered Closed Microbial Fuel Cell. ScientificWorldJournal 2022; 2022:3885745. [PMID: 36132437 PMCID: PMC9484973 DOI: 10.1155/2022/3885745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Sustained bioenergy production from organisms that thrive in high salinity, low oxygen, and low nutrition levels is useful in monitoring hypersaline polluted environments. Microbial fuel cell (MFC) studies utilizing single species halophiles under salt concentrations higher than 1 M and as a closed microbial system are limited. The current study aimed to establish baseline voltage, current, and power density from a dual-chambered MFC utilizing the halophile Halobacterium salinarum NRC-1. MFC performance was determined with two different electrode sizes (5 cm2 and 10 cm2), under oscillating and nonoscillating conditions, as well as in a stacked series. A closed dual-chamber MFC system of 100 mL capacity was devised with Halobacterium media (4.3 M salt concentration) as both anolyte and catholyte, with H. salinarum NRC-1 being the anodic organism. The MFC measured electrical output over 7, 14, 28, and 42 days. MFC output increased with 5 cm2 sized electrodes under nonoscillating (p < 0.0001) relative to oscillating conditions. However, under oscillating conditions, doubling the electrode size increased MFC output significantly (p = 0.01). The stacked series MFC, with an electrode size of 10 cm2, produced the highest power density (1.2672 mW/m2) over 14 days under oscillation. Our results highlight the potentiality of H. salinarum as a viable anodic organism to produce sustained voltage in a closed-MFC system.
Collapse
|
5
|
Verma DK, Chaudhary C, Singh L, Sidhu C, Siddhardha B, Prasad SE, Thakur KG. Isolation and Taxonomic Characterization of Novel Haloarchaeal Isolates From Indian Solar Saltern: A Brief Review on Distribution of Bacteriorhodopsins and V-Type ATPases in Haloarchaea. Front Microbiol 2020; 11:554927. [PMID: 33362726 PMCID: PMC7755889 DOI: 10.3389/fmicb.2020.554927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/17/2020] [Indexed: 01/10/2023] Open
Abstract
Haloarchaea inhabit high salinity environments worldwide. They are a potentially rich source of crucial biomolecules like carotenoids and industrially useful proteins. However, diversity in haloarchaea present in Indian high salinity environments is poorly studied. In the present study, we isolated 12 haloarchaeal strains from hypersaline Kottakuppam, Tamil Nadu solar saltern in India. 16S rRNA based taxonomic characterization of these isolates suggested that nine of them are novel strains that belong to genera Haloarcula, Halomicrobium, and Haloferax. Transmission electron microscopy suggests the polymorphic nature of these haloarchaeal isolates. Most of the haloarchaeal species are known to be high producers of carotenoids. We were able to isolate carotenoids from all these 12 isolates. The UV-Vis spectroscopy-based analysis suggests that bacterioruberin and lycopene are the major carotenoids produced by these isolates. Based on the visual inspection of the purified carotenoids, the isolates were classified into two broad categories i.e., yellow and orange, attributed to the differences in the ratio of bacterioruberin and lycopene as confirmed by the UV-Vis spectral analysis. Using a PCR-based screening assay, we were able to detect the presence of the bacteriorhodopsin gene (bop) in 11 isolates. We performed whole-genome sequencing for three bop positive and one bop negative haloarchaeal isolates. Whole-genome sequencing, followed by pan-genome analysis identified multiple unique genes involved in various biological functions. We also successfully cloned, expressed, and purified functional recombinant bacteriorhodopsin (BR) from one of the isolates using Escherichia coli as an expression host. BR has light-driven proton pumping activity resulting in the proton gradient across the membrane, which is utilized by V-Type ATPases to produce ATP. We analyzed the distribution of bop and other accessory genes involved in functional BR expression and ATP synthesis in all the representative haloarchaeal species. Our bioinformatics-based analysis of all the sequenced members of genus Haloarcula suggests that bop, if present, is usually inserted between the genes coding for B and D subunits of the V-type ATPases operon. This study provides new insights into the genomic variations in haloarchaea and reports expression of new BR variant having good expression in functional form in E. coli.
Collapse
Affiliation(s)
- Dipesh Kumar Verma
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Chetna Chaudhary
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Latika Singh
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Chandni Sidhu
- MTCC-Microbial Type Culture Collection & Gene Bank, Council of Scientific and Industrial Research Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Busi Siddhardha
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Senthil E Prasad
- Biochemical Engineering Research and Process Development Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Krishan Gopal Thakur
- Structural Biology Laboratory, G. N. Ramachandran Protein Centre, Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| |
Collapse
|
6
|
Pfeifer K, Ergal İ, Koller M, Basen M, Schuster B, Rittmann SKMR. Archaea Biotechnology. Biotechnol Adv 2020; 47:107668. [PMID: 33271237 DOI: 10.1016/j.biotechadv.2020.107668] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022]
Abstract
Archaea are a domain of prokaryotic organisms with intriguing physiological characteristics and ecological importance. In Microbial Biotechnology, archaea are historically overshadowed by bacteria and eukaryotes in terms of public awareness, industrial application, and scientific studies, although their biochemical and physiological properties show a vast potential for a wide range of biotechnological applications. Today, the majority of microbial cell factories utilized for the production of value-added and high value compounds on an industrial scale are bacterial, fungal or algae based. Nevertheless, archaea are becoming ever more relevant for biotechnology as their cultivation and genetic systems improve. Some of the main advantages of archaeal cell factories are the ability to cultivate many of these often extremophilic organisms under non-sterile conditions, and to utilize inexpensive feedstocks often toxic to other microorganisms, thus drastically reducing cultivation costs. Currently, the only commercially available products of archaeal cell factories are bacterioruberin, squalene, bacteriorhodopsin and diether-/tetraether-lipids, all of which are produced utilizing halophiles. Other archaeal products, such as carotenoids and biohydrogen, as well as polyhydroxyalkanoates and methane are in early to advanced development stages, respectively. The aim of this review is to provide an overview of the current state of Archaea Biotechnology by describing the actual state of research and development as well as the industrial utilization of archaeal cell factories, their role and their potential in the future of sustainable bioprocessing, and to illustrate their physiological and biotechnological potential.
Collapse
Affiliation(s)
- Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria; Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - İpek Ergal
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| | - Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, Austria
| | - Mirko Basen
- Microbial Physiology Group, Division of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Bernhard Schuster
- Institute of Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Wien, Austria
| | - Simon K-M R Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria.
| |
Collapse
|
7
|
Uritskiy G, Munn A, Dailey M, Gelsinger DR, Getsin S, Davila A, McCullough PR, Taylor J, DiRuggiero J. Environmental Factors Driving Spatial Heterogeneity in Desert Halophile Microbial Communities. Front Microbiol 2020; 11:578669. [PMID: 33193201 PMCID: PMC7606970 DOI: 10.3389/fmicb.2020.578669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Spatial heterogeneity in microbial communities is observed in all natural ecosystems and can stem from both adaptations to local environmental conditions as well as stochastic processes. Extremophile microbial communities inhabiting evaporitic halite nodules (salt rocks) in the Atacama Desert, Chile, are a good model ecosystem for investigating factors leading to microbiome heterogeneity, due to their diverse taxonomic composition and the spatial segregation of individual nodules. We investigated the abiotic factors governing microbiome composition across different spatial scales, allowing for insight into the factors that govern halite colonization from regional desert-wide scales to micro-scales within individual nodules. We found that water availability and community drift account for microbiome assembly differently at different distance scales, with higher rates of cell dispersion at the smaller scales resulting in a more homogenous composition. This trend likely applies to other endoliths, and to non-desert communities, where dispersion between communities is limited. At the intra-nodule scales, a light availability gradient was most important in determining the distribution of microbial taxa despite intermixing by water displacement via capillary action.
Collapse
Affiliation(s)
- Gherman Uritskiy
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Adam Munn
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Micah Dailey
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Diego R. Gelsinger
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Samantha Getsin
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Alfonso Davila
- NASA Ames Research Center, Moffett Field, CA, United States
| | - P. R. McCullough
- Department of Physics and Astronomy, Johns Hopkins University, and Space Telescope Science Institute, Baltimore, MD, United States
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
8
|
Improved production of bacteriorhodopsin from Halobacterium salinarum through direct amino acid supplement in the basal medium. Extremophiles 2018; 23:133-139. [DOI: 10.1007/s00792-018-1067-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022]
|