1
|
Wang X, Wang Z, Zhang X, Zhang Y, Zhang W, Zhang Y, Zhang X, Xiao Y, Zhang Y, Fang W. Bioinformatics-assisted mining and design of novel pullulanase suitable for starch cold hydrolysis. J Biotechnol 2025; 398:106-116. [PMID: 39681264 DOI: 10.1016/j.jbiotec.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/14/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Cold-active pullulanases with good catalytic performance possess promising applications in cold hydrolysis of starch. Adopting bioinformatics-assisted mining strategies, 7 candidate cold-active pullulanases were initially screened out from IMG/MER database. Among the candidates, PulBs exhibited good thermostability and the highest specific activity of 147.4 U/mg. The half-life of PulBs was about 200 h at 35 °C. Employing PulBs as the initial enzyme, the active-site design of FuncLib was implemented to enhance the activity. The design PulBs-20 exhibited an enhanced specific activity of 209.9 U/mg, which was 1.4 times that of PulBs. Furthermore, the thermostability of PulBs-20 was augmented, with a half-life of 250 h at 35 °C. When applied in the cold hydrolysis of starch, PulBs-20 can effectively enhance the hydrolysis effect of raw starch. Supplemented with the raw starch-hydrolyzing α-amylase AmyZ1 and PulBs-20, the hydrolysis rate of raw corn starch increased to 53.5 %, which was 1.3 times that of using AmyZ1 alone. Due to its high hydrolysis activity and good thermostability, PulBs-20 can serve as an efficient accessory enzyme in starch cold hydrolysis.
Collapse
Affiliation(s)
- Xin Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Zixing Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xueting Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yanli Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Wenxia Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yu Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China
| | - Yinliang Zhang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| | - Wei Fang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui 230601, China; Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Ghosh M, Heo Y, Pulicherla KK, Ha MW, Do K, Son YO. Cold-active enzymes from deep marine psychrophiles: harnessing their potential in enhanced food production and sustainability. Crit Rev Biotechnol 2025:1-25. [PMID: 39757008 DOI: 10.1080/07388551.2024.2435974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 01/07/2025]
Abstract
Exploring the untapped potential of deep-sea microorganisms, particularly their cold-active enzymes, or psychrozymes, offers exciting possibilities for revolutionizing various aspects of the food processing industry. This review focuses on these enzymes, derived from the largely unexplored depths of the deep ocean, where microorganisms have developed unique adaptations to extreme conditions. Psychrozymes, as bioactive molecules, hold significant promise for food industry applications. However, despite their potential, the understanding and industrial utilization of psychrozymes remains limited. This review provides an in-depth analysis of how psychrozymes can: improve processing efficiency, enhance sensory qualities, extend product shelf life, and reduce energy consumption across the food production chain. We explore the cryodefense strategies and cold-adaptation mechanisms that support these enzymes, shedding light on the most extensively studied psychrozymes and assessing their journey from theoretical applications to practical use in food production. The key properties, such as stability, substrate specificity, and catalytic efficiency in cold environments, are also discussed. Although psychrozymes show considerable promise, their large-scale application in the food industry remains largely unexplored. This review emphasizes the need for further research to unlock the full potential of psychrozymes, encouraging their broader integration into the food sector to contribute to more sustainable food production processes.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Yunji Heo
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Krishna Kanth Pulicherla
- Department of Science and Technology, Ministry of Science and Technology, Govt. of India, Technology Bhavan, New Delhi, India
| | - Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju-si, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju Special Self-Governing Province, Republic of Korea
- Bio-Health Materials Core-Facility Center, Jeju National University, Jeju-si, Republic of Korea
- Practical Translational Research Center, Jeju National University, Jeju-si, Republic of Korea
| |
Collapse
|
3
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
4
|
Kayrav A, Mumcu H, Durmus N, Karaguler NG. Revealing the role of the X25 domains through the characterization of truncated variants of amylopullulanase enzyme from Thermoanaerobacter brockii brockii. Int J Biol Macromol 2024; 270:132404. [PMID: 38754672 DOI: 10.1016/j.ijbiomac.2024.132404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
To understand the role of the X25 domains of the amylopullulanase enzyme from Thermoanaerobacter brockii brockii (T. brockii brockii), four truncated variants that are TbbApuΔX25-1-SH3 (S130-A1484), TbbApuΔX25-2-SH3 (T235-A1484), TbbApuΔX25-1-CBM20 (S130-P1254), and TbbApuΔX25-2-CBM20 (T235-P1254) were constructed, expressed and characterized together with the SH3 and CBM20 domain truncated variants (TbbApuΔSH3 (V1-A1484) and TbbApuΔCBM20 (V1-P1254). TbbApuΔSH3 showed improved affinity and specificity for both pullulan and soluble starch than full-length TbbApu with lower Km and higher kcat/Km values. It indicates that SH3 is a disposable domain without any effect on the activity and stability of the enzyme. However, TbbApuΔX25-1-SH3, TbbApuΔX25-2-SH3, TbbApuΔX25-1-CBM20, TbbApuΔX25-2-CBM20 (T235-P1254) and TbbApuΔCBM20 showed higher Km and lower kcat/Km values than TbbApuΔSH3 to both soluble starch and pullulan. It specifies that the X25 domains and CBM20 play an important role in both α-amylase and pullulanase activity. Also, it is revealed that while truncation of the CBM20 domain as starch binding domain (SBD) did not affect on raw starch binding ability of the enzyme, truncation of both X25 domains caused almost complete loss of the raw starch binding ability of the enzyme. All these results enlightened the function of the X25 domains that play a more crucial role than CBM20 in the enzyme's binding to raw starch and also play a crucial role in its activity.
Collapse
Affiliation(s)
- Aycan Kayrav
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Hande Mumcu
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Naciye Durmus
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye
| | - Nevin Gul Karaguler
- Istanbul Technical University, Faculty of Science and Letters, Department of Molecular Biology and Genetics, 34469 Istanbul, Türkiye; Istanbul Technical University, Dr. Orhan Öcalgiray Molecular Biology-Biotechnology and Genetics Research Center, Istanbul, Türkiye.
| |
Collapse
|
5
|
Al-Mamoori ZZ, Embaby AM, Hussein A, Mahmoud HE. A molecular study on recombinant pullulanase type I from Metabacillus indicus. AMB Express 2023; 13:40. [PMID: 37119334 PMCID: PMC10148936 DOI: 10.1186/s13568-023-01545-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/15/2023] [Indexed: 05/01/2023] Open
Abstract
Despite the great potential of cold-adapted pullulanase type I in tremendous industrial applications, the majority of commercialized pullulnases type I are of mesophilic and thermophilic origin so far. Hence, the present study underlines cloning, heterologous expression in Escherichia coli, characterization, and in silico structural modeling of Metabacillus indicus open reading frame of cold-adapted pullulanase type I (Pull_Met: 2133 bp & 710 a.a) for the first time ever. The predicted Pull_Met tertiary structure by I-TASSER, was structurally similar to PDB 2E9B pullulanase of Bacillus subtilis. Purified to homogeneity Pull_Met showed specific activity (667.6 U/mg), fold purification (31.7), molecular mass (79.1 kDa), monomeric subunit and Km (2.63 mg/mL) on pullulan. Pull_Met had optimal pH (6.0) and temperature (40 oC). After 10 h pre-incubation at pH 2.6-6.0, Pull_Met maintained 47.12 ± 0.0-35.28 ± 1.64% of its activity. After 120 min pre-incubation at 30 oC, the retained activity was 51.11 ± 0.29%. At 10 mM Mn2+, Na2+, Ca2+, Mg2+, and Cu2+ after 30 min preincubation, retained activity was 155.89 ± 8.97, 134.71 ± 1.82, 97.64 ± 7.06, 92.25 ± 4.18, and 71.28 ± 1.10%, respectively. After 30 min pre-incubation with Tween-80, Tween-20, Triton X-100, and commercially laundry detergents at 0.1% (v/v), the retained activity was 141.15 ± 3.50, 145.45 ± 0.20, 118.12 ± 11.00, and 90%, respectively. Maltotriose was the only end product of pullulan hydrolysis. Synergistic action of CA-AM21 (α-amylase) and Pull_Met on starch liberated 16.51 g reducing sugars /g starch after 1 h at 40 oC. Present data (cold-adeptness, detergent stability, and ability to exhibit starch saccharification of Pull_Met) underpins it as a promising pullulanase type I for industrial exploitation.
Collapse
Affiliation(s)
- Zahraa Z Al-Mamoori
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Amira M Embaby
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Ahmed Hussein
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Hoda E Mahmoud
- Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
6
|
Wu Y, Huang S, Liang X, Han P, Liu Y. Characterization of a novel detergent-resistant type I pullulanase from Bacillus megaterium Y103 and its application in laundry detergent. Prep Biochem Biotechnol 2022:1-7. [PMID: 36271878 DOI: 10.1080/10826068.2022.2134890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aims to find a moderate pullulanase for detergent industry. The pulY103B gene (2217 bp) from Bacillus megaterium Y103 was cloned and expressed in Escherichia coli. PulY103B contained four conserved regions of glycoside hydrolase family (GH) 13 and the typical sequence of type I pullulanase. The optimal reaction conditions of PulY103B were pH 6.5 and 40 °C. In addition, it remained stable below 40 °C and over 80% of activity was retained at pH ranging from 6.0 to 8.5. The best substrate for the enzyme was pullulan. Furthermore, it exhibited activity toward wheat starch (36.5%) and soluble starch (33.4%) but had no activity toward amylose and glycogen. Maltotriose and maltohexaose were major pullulan hydrolysis products. Soluble starch and amylopectin were mainly hydrolyzed into maltotetraose. These results indicated that PulY103B is a novel type I pullulanase with transglycosylation activity via formation of α-1,4-glucosidic linkages. Moreover, PulY103B was strongly stimulated by nonionic detergents [viz, Tween 20 (10%), Tween 80 (1%), Triton X-100 (20%)] and commercial liquid detergents (3.0 g/L). Wash performance tests demonstrated that the mixture of PulY103B and detergent removed starch-based stains better than using detergent alone (p < 0.05). Therefore, this pullulanase has big potential as a detergent additive.
Collapse
Affiliation(s)
- Yongmin Wu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Shuai Huang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xiaobo Liang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Peng Han
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Yuchun Liu
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| |
Collapse
|
7
|
In-Depth Characterization of Debranching Type I Pullulanase from Priestia koreensis HL12 as Potential Biocatalyst for Starch Saccharification and Modification. Catalysts 2022. [DOI: 10.3390/catal12091014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pullulanase is an effective starch debranching enzyme widely used in starch saccharification and modification. In this work, the biochemical characteristics and potential application of a new type I pullulanase from Priestia koreensis HL12 (HL12Pul) were evaluated and reported for the first time. Through in-depth evolutionary analysis, HL12Pul was classified as type I pullulanase belonging to glycoside hydrolase family 13, subfamily 14 (GH13_14). HL12Pul comprises multi-domains architecture, including two carbohydrate-binding domains, CBM68 and CBM48, at the N-terminus, the TIM barrel structure of glycoside hydrolase family 13 (GH13) and C-domain. Based on sequence analysis and experimental cleavage profile, HL12Pul specifically hydrolyzes only α-1,6 glycosidic linkage-rich substrates. The enzyme optimally works at 40 °C, pH 6.0, with the maximum specific activity of 181.14 ± 3.55 U/mg protein and catalytic efficiency (kcat/Km) of 49.39 mL/mg·s toward pullulan. In addition, HL12Pul worked in synergy with raw starch-degrading α-amylase, promoting raw cassava starch hydrolysis and increasing the sugar yield by 2.9-fold in comparison to the α-amylase alone in a short reaction time. Furthermore, HL12Pul effectively produces type III-resistant starch (RSIII) from cassava starch with a production yield of 70%. These indicate that HL12Pul has the potential as a biocatalyst for starch saccharification and modification.
Collapse
|
8
|
Han AR, Kim H, Park JT, Kim JW. Characterization of a cold-adapted debranching enzyme and its role in glycogen metabolism and virulence of Vibrio vulnificus MO6-24/O. JOURNAL OF MICROBIOLOGY (SEOUL, KOREA) 2022; 60:375-386. [PMID: 35157220 DOI: 10.1007/s12275-022-1507-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022]
Abstract
Vibrio vulnificus MO6-24/O has three genes annotated as debranching enzymes or pullulanase genes. Among them, the gene encoded by VVMO6_03032 (vvde1) shares a higher similarity at the amino acid sequence level to the glycogen debranching enzymes, AmyX of Bacillus subtilis (40.5%) and GlgX of Escherichia coli (55.5%), than those encoded by the other two genes. The vvde1 gene encoded a protein with a molecular mass of 75.56 kDa and purified Vvde1 efficiently hydrolyzed glycogen and pullulan to shorter chains of maltodextrin and maltotriose (G3), respectively. However, it hydrolyzed amylopectin and soluble starch far less efficiently, and β-cyclodextrin (β-CD) only rarely. The optimal pH and temperature of Vvde1 was 6.5 and 25°C, respectively. Vvde1 was a cold-adapted debranching enzyme with more than 60% residual activity at 5°C. It could maintain stability for 2 days at 25°C and 1 day at 35°C, but it destabilized drastically at 40°C. The Vvde1 activity was inhibited considerably by Cu2+, Hg2+, and Zn2+, while it was slightly enhanced by Co2+, Ca2+, Ni2+, and Fe2+. The vvde1 knock-out mutant accumulated more glycogen than the wild-type in media supplemented with 1.0% maltodextrin; however, the side chain length distribution of glycogen was similar to that of the wild-type except G3, which was much more abundant in the mutant. Therefore, Vvde1 seemed to debranch glycogen with the degree of polymerization 3 (DP3) as the specific target branch length. Virulence of the pathogen against Caenorhabditis elegans was attenuated significantly by the vvde1 mutation. These results suggest that Vvde1 might be a unique glycogen debranching enzyme that is involved in both glycogen utilization and shaping of glycogen molecules, and contributes toward virulence of the pathogen.
Collapse
Affiliation(s)
- Ah-Reum Han
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, 22102, Republic of Korea
| | - Haeyoung Kim
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, 22102, Republic of Korea
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jung-Wan Kim
- Department of Life Sciences, Graduate School of Incheon National University, Incheon, 22102, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon, 22102, Republic of Korea.
| |
Collapse
|
9
|
Abstract
Starch and pullulan degrading enzymes are essential industrial biocatalysts. Pullulan-degrading enzymes are grouped into pullulanases (types I and type II) and pullulan hydrolase (types I, II and III). Generally, these enzymes hydrolyse the α-1,6 glucosidic bonds (and α-1,4 for certain enzyme groups) of substrates and form reducing sugars such as glucose, maltose, maltotriose, panose or isopanose. This review covers two main aspects: (i) bibliometric analysis of publications and patents related to pullulan-degrading enzymes and (ii) biological aspects of free and immobilised pullulan-degrading enzymes and protein engineering. The collective data suggest that most publications involved researchers within the same institution or country in the past and current practice. Multi-national interaction shall be improved, especially in tapping the enzymes from unculturable prokaryotes. While the understanding of pullulanases may reach a certain extend of saturation, the discovery of pullulan hydrolases is still limited. In this report, we suggest readers consider using the next-generation sequencing technique to fill the gaps of finding more new sequences encoding pullulan-degrading enzymes to expand the knowledge body of this topic.
Collapse
|
10
|
Kumari M, Padhi S, Sharma S, Phukon LC, Singh SP, Rai AK. Biotechnological potential of psychrophilic microorganisms as the source of cold-active enzymes in food processing applications. 3 Biotech 2021; 11:479. [PMID: 34790503 DOI: 10.1007/s13205-021-03008-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
Microorganisms striving in extreme environments and exhibiting optimal growth and reproduction at low temperatures, otherwise known as psychrophilic microorganisms, are potential sources of cold-active enzymes. Owing to higher stability and cold activity, these enzymes are gaining enormous attention in numerous industrial bioprocesses. Applications of several cold-active enzymes have been established in the food industry, e.g., β-galactosidase, pectinase, proteases, amylases, xylanases, pullulanases, lipases, and β-mannanases. The enzyme engineering approaches and the accumulating knowledge of protein structure and function have made it possible to improve the catalytic properties of interest and express the candidate enzyme in a heterologous host for a higher level of enzyme production. This review compiles the relevant and recent information on the potential uses of different cold-active enzymes in the food industry.
Collapse
Affiliation(s)
- Megha Kumari
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Swati Sharma
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing, Mohali, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Sikkim, India
| |
Collapse
|
11
|
Sadeghian Motahar SF, Salami M, Ariaeenejad S, Emam‐Djomeh Z, Sheykh Abdollahzadeh Mamaghani A, Kavousi K, Moghadam M, Hosseini Salekdeh G. Synergistic Effect of Metagenome‐Derived Starch‐Degrading Enzymes on Quality of Functional Bread with Antioxidant Activity. STARCH-STARKE 2021. [DOI: 10.1002/star.202100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Maryam Salami
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Zahra Emam‐Djomeh
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB) Institute of Biochemistry and Biophysics (IBB) University of Tehran Tehran Iran
| | - Maryam Moghadam
- Department of Food Science and Engineering University College of Agriculture & Natural Resources University of Tehran Karaj Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology Agricultural Biotechnology Research Institute of Iran (ABRII) Agricultural Research Education and Extension Organization (AREEO) Karaj Iran
| |
Collapse
|
12
|
Microbial starch debranching enzymes: Developments and applications. Biotechnol Adv 2021; 50:107786. [PMID: 34147588 DOI: 10.1016/j.biotechadv.2021.107786] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022]
Abstract
Starch debranching enzymes (SDBEs) hydrolyze the α-1,6 glycosidic bonds in polysaccharides such as starch, amylopectin, pullulan and glycogen. SDBEs are also important enzymes for the preparation of sugar syrup, resistant starch and cyclodextrin. As the synergistic catalysis of SDBEs and other starch-acting hydrolases can effectively improve the raw material utilization and production efficiency during starch processing steps such as saccharification and modification, they have attracted substantial research interest in the past decades. The substrate specificities of the two major members of SDBEs, pullulanases and isoamylases, are quite different. Pullulanases generally require at least two α-1,4 linked glucose units existing on both sugar chains linked by the α-1,6 bond, while isoamylases require at least three units of α-1,4 linked glucose. SDBEs mainly belong to glycoside hydrolase (GH) family 13 and 57. Except for GH57 type II pullulanse, GH13 pullulanases and isoamylases share plenty of similarities in sequence and structure of the core catalytic domains. However, the N-terminal domains, which might be one of the determinants contributing to the substrate binding of SDBEs, are distinct in different enzymes. In order to overcome the current defects of SDBEs in catalytic efficiency, thermostability and expression level, great efforts have been made to develop effective enzyme engineering and fermentation strategies. Herein, the diverse biochemical properties and distinct features in the sequence and structure of pullulanase and isoamylase from different sources are summarized. Up-to-date developments in the enzyme engineering, heterologous production and industrial applications of SDBEs is also reviewed. Finally, research perspective which could help understanding and broadening the applications of SDBEs are provided.
Collapse
|
13
|
Thakur M, Sharma N, Rai AK, Singh SP. A novel cold-active type I pullulanase from a hot-spring metagenome for effective debranching and production of resistant starch. BIORESOURCE TECHNOLOGY 2021; 320:124288. [PMID: 33120064 DOI: 10.1016/j.biortech.2020.124288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Pullulanase is a potent enzyme for starch debranching. In this study, a novel type I pullulanase (PulM) was identified from the metagenome of a thermal aquatic habitat that exhibits optimal activity of debranching at 40 °C temperature and pH 6.0 to 7.0. More than 50% enzymatic activity was detected at the low temperature of 4 °C, determining it a cold-active type I pullulanase. It was able to efficiently catalyze the hydrolysis of α-1,6-glycosidic linkages in pullulan, with a specific activity of 177 U mg-1. The results determined PulM to be a potential starch debranching biocatalyst, causing a significant increase of about 80% in the apparent amylose content of potato starch. Retrogradation of the debranched starch resulted in the formation of resistant starch 3. The yield of resistant starch was estimated to be about 45%. The resistant starch exhibited higher crystallinity, enhanced heat-stability, and resistance to α-amylase digestion, as compared to native starch.
Collapse
Affiliation(s)
- Monika Thakur
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Sector 81, Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Sector 81, Mohali, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Amit K Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Sikkim Centre, Tadong, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing (DBT-CIAB), SAS Nagar, Sector 81, Mohali, India.
| |
Collapse
|
14
|
Bioconversion of chitin waste using a cold-adapted chitinase to produce chitin oligosaccharides. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Gene cloning, expression and biochemical characterization of a new multi-domain, halotolerant and SDS-resistant alkaline pullulanase from Alkalibacterium sp. SL3. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Cripwell RA, Favaro L, Viljoen-Bloom M, van Zyl WH. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges. Biotechnol Adv 2020; 42:107579. [PMID: 32593775 DOI: 10.1016/j.biotechadv.2020.107579] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022]
Abstract
Recent advances in amylolytic strain engineering for starch-to-ethanol conversion have provided a platform for the development of raw starch consolidated bioprocessing (CBP) technologies. Several proof-of-concept studies identified improved enzyme combinations, alternative feedstocks and novel host strains for evaluation and application under fermentation conditions. However, further research efforts are required before this technology can be scaled up to an industrial level. In this review, different CBP approaches are defined and discussed, also highlighting the role of auxiliary enzymes for a supplemented CBP process. Various achievements in the development of amylolytic Saccharomyces cerevisiae strains for CBP of raw starch and the remaining challenges that need to be tackled/pursued to bring yeast raw starch CBP to industrial realization, are described. Looking towards the future, it provides potential solutions to develop more cost-effective processes that include cheaper substrates, integration of the 1G and 2G economies and implementing a biorefinery concept where high-value products are also derived from starchy substrates.
Collapse
Affiliation(s)
- Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università di Padova, Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
17
|
Pang B, Zhou L, Cui W, Liu Z, Zhou Z. Production of a Thermostable Pullulanase in
Bacillus subtilis
by Optimization of the Expression Elements. STARCH-STARKE 2020. [DOI: 10.1002/star.202000018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bo Pang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|
18
|
Zhang SY, Guo ZW, Wu XL, Ou XY, Zong MH, Lou WY. Recombinant expression and characterization of a novel cold-adapted type I pullulanase for efficient amylopectin hydrolysis. J Biotechnol 2020; 313:39-47. [DOI: 10.1016/j.jbiotec.2020.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
|
19
|
Al-Ghanayem AA, Joseph B. Current prospective in using cold-active enzymes as eco-friendly detergent additive. Appl Microbiol Biotechnol 2020; 104:2871-2882. [PMID: 32037467 DOI: 10.1007/s00253-020-10429-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 12/13/2022]
Abstract
Advanced developments in the field of enzyme technology have increased the use of enzymes in industrial applications, especially in detergents. Enzymes as detergent additives have been extensively studied and the demand is considerably increasing due to its distinct properties and potential applications. Enzymes from microorganisms colonized at various geographical locations ranging from extreme hot to cold are explored for compatibility studies as detergent additives. Especially psychrophiles growing at cold conditions have cold-active enzymes with high catalytic activity and their stability under extreme conditions makes it as an appropriate eco-friendly and cost-effective additive in detergents. Adequate number of reports are available on cold-active enzymes such as proteases, lipases, amylases, and cellulases with high efficiency and exceptional features. These enzymes with increased thermostability and alkaline stability have become the premier choice as detergent additives. Modern approaches in genomics and proteomics paved the way to understand the compatibility of cold-active enzymes as detergent additives in broader dimensions. The molecular techniques such as gene coding, amino acid sequencing, and protein engineering studies helped to solve the mysteries related to alkaline stability of these enzymes and their chemical compatibility with oxidizing agents. The present review provides an overview of cold-active enzymes used as detergent additives and molecular approaches that resulted in development of these enzymes as commercial hit in detergent industries. The scope and challenges in using cold-active enzymes as eco-friendly and sustainable detergent additive are also discussed.
Collapse
Affiliation(s)
- Abdullah A Al-Ghanayem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Kingdom of Saudi Arabia
| | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Kingdom of Saudi Arabia.
| |
Collapse
|
20
|
Improvement of the Thermostability and Activity of Pullulanase from Anoxybacillus sp. WB42. Appl Biochem Biotechnol 2020; 191:942-954. [DOI: 10.1007/s12010-020-03249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022]
|
21
|
Pang B, Zhou L, Cui W, Liu Z, Zhou S, Xu J, Zhou Z. A Hyperthermostable Type II Pullulanase from a Deep-Sea Microorganism Pyrococcus yayanosii CH1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9611-9617. [PMID: 31385500 DOI: 10.1021/acs.jafc.9b03376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pullulanase is a commonly used debranching enzyme in the starch processing industry. Because the starch liquefaction process requires high temperature, a thermostable pullulanase is desired. Here, a novel hyperthermostable type II pullulanase gene (pulPY) was cloned from Pyrococcus yayanosii CH1, isolated from a deep-sea hydrothermal site. PulPY was optimally active at pH 6.6 and 95 °C, retaining more than 50% activity after incubation at 95 °C for 10 h. The thermostability was significantly higher than those of most pullulanases reported previously. To further improve its activity and thermostability, the N-terminal and C-terminal domains of PulPY were truncated. The optimum temperature of the combined truncation mutant Δ28N + Δ791C increased to 100 °C with a specific activity of 32.18 U/mg, which was six times higher than that of wild-type PulPY. PulPY and the truncation mutant enzyme could realize the combined use of pullulanase with α-amylase during the starch liquefaction process to improve hydrolysis efficiency.
Collapse
Affiliation(s)
- Bo Pang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology , East China University of Science and Technology , Shanghai 200237 , P.R. China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology and State Key Laboratory of Ocean Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education , Jiangnan University , 1800 Lihu Avenue , Wuxi 214122 , China
| |
Collapse
|
22
|
Jiao Y, Wu Y, Chen H, Wang S, Chen L, Lv M, Fang Y, Liu S. The impact of N-terminal nonessential domains on the enzymological properties of the pullulanase from a marine Bacillus megaterium. Biotechnol Lett 2019; 41:849-857. [DOI: 10.1007/s10529-019-02686-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
|
23
|
Wang X, Nie Y, Xu Y. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. BIORESOURCE TECHNOLOGY 2019; 278:360-371. [PMID: 30709762 DOI: 10.1016/j.biortech.2019.01.098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Pullulanases (EC 3.2.1.41) are well-known starch-debranching enzymes widely used to hydrolyze α-1,6-glucosidic linkages in starch, pullulan, amylopectin, and other oligosaccharides, with application potentials in food, brewing, and pharmaceutical industries. Although extensive studies are done to discover and express pullulanases, only few are available with desirable characteristics for industrial applications. This raises the challenge to mine new enzyme sources, engineer proteins based on sequence/structure, and regulate expressions. We review here the identification of extremophilic and mesophilic microbes as sources of industrial pullulanases with desirable characteristics, including acid-resistance, thermostability, and psychrotrophism. We present current advances in site-directed mutagenesis and sequence/structure-guided protein engineering of pullulanases. In addition, we discuss heterologous expression of pullulanases in prokaryotic and eukaryotic microbial systems, and address the effectiveness of the expression elements and their regulation of enzyme production. Finally, we indicate future research needs to develop desired industrial pullulanases.
Collapse
Affiliation(s)
- Xinye Wang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; The 2011 Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Lu Z, Hu X, Shen P, Wang Q, Zhou Y, Zhang G, Ma Y. A pH-stable, detergent and chelator resistant type I pullulanase from Bacillus pseudofirmus 703 with high catalytic efficiency. Int J Biol Macromol 2018; 109:1302-1310. [DOI: 10.1016/j.ijbiomac.2017.11.139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
25
|
Zhang Y, Oh S, Liu WT. Impact of drinking water treatment and distribution on the microbiome continuum: an ecological disturbance's perspective. Environ Microbiol 2017; 19:3163-3174. [PMID: 28654183 DOI: 10.1111/1462-2920.13800] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/30/2017] [Accepted: 05/12/2017] [Indexed: 12/01/2022]
Abstract
While microbes are known to be present at different stages of a drinking water system, their potential functions and ability to grow in such systems are poorly understood. In this study, we demonstrated that treatment and distribution processes could be viewed as ecological disturbances exhibited over space on the microbiome continuum in a groundwater-derived system. Results from 16S rRNA gene amplicon analysis and metagenomics suggested that disturbances in the system were intense as the community diversity was substantially reduced during the treatment steps. Specifically, syntrophs and methanogens dominant in raw water (RW) disappeared after water abstraction, accompanied by a substantial decrease in both the abundance and number of functional genes related to methanogenesis. The softening effluent was dominated by an Exiguobacterium-related population, likely due to its ability to use the phosphotransferase system (PTS) as regulatory machinery to control the energy conditions of the cell. After disinfection and entering the distribution system, community-level functionality remained relatively stable, whereas the community structure differed from those taken in the treatment steps. The diversity and high abundance of some eukaryotic groups in the system suggested that predation could be a disturbance to the bacterial microbiome, which could further drive the diversification of the bacterial community.
Collapse
Affiliation(s)
- Ya Zhang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL, 61810, USA
| | - Seungdae Oh
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 205 N. Mathews Ave, Urbana, IL, 61810, USA
| |
Collapse
|
26
|
|
27
|
Kasana RC, Pandey CB. Exiguobacterium: an overview of a versatile genus with potential in industry and agriculture. Crit Rev Biotechnol 2017; 38:141-156. [DOI: 10.1080/07388551.2017.1312273] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - C. B. Pandey
- ICAR-Central Arid Zone Research Institute, Jodhpur, India
| |
Collapse
|
28
|
Elleuche S, Krull A, Lorenz U, Antranikian G. Parallel N- and C-Terminal Truncations Facilitate Purification and Analysis of a 155-kDa Cold-Adapted Type-I Pullulanase. Protein J 2017; 36:56-63. [DOI: 10.1007/s10930-017-9703-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Improving the Thermostability of Acidic Pullulanase from Bacillus naganoensis by Rational Design. PLoS One 2016; 11:e0165006. [PMID: 27764201 PMCID: PMC5072709 DOI: 10.1371/journal.pone.0165006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/04/2016] [Indexed: 11/19/2022] Open
Abstract
Pullulanase (EC 3.2.1.41) plays an important role in the specific hydrolysis of branch points in amylopectin. Enhancing its thermostability is required for its industrial application. In this study, rational protein design was used to improve the thermostability of PulB from Bacillus naganoensis (AB231790.1), which has strong enzymatic properties. Three positive single-site mutants (PulB-D328H, PulB-N387D, and PulB-A414P) were selected from six mutants. After incubation at 65°C for 5 min, the residual activities of PulB-D328H, PulB-N387D, and PulB-A414P were 4.5-, 1.7-, and 1.47-fold higher than PulB-WT, and their Tm values (the temperature at which half protein molecule denature) were 1.8°C, 0.4°C, and 0.9°C higher than PulB-WT, respectively. Then the final combined mutant PulB-328/387/414 was constructed. The t1/2 of it was 12.9-fold longer than that of PulB-WT at 65°C and the total increase in Tm of it (5.0°C) was almost 60% greater than the sum of individual increases (3.1°C). In addition, kinetic studies revealed that the kcat and the kcat/Km of PulB-328/387/414 increased by 38.8% and 12.9%. The remarkable improvement in thermostability and the high catalytic efficiency of PulB-328/387/414 make it suitable for industrial applications.
Collapse
|
30
|
Santiago M, Ramírez-Sarmiento CA, Zamora RA, Parra LP. Discovery, Molecular Mechanisms, and Industrial Applications of Cold-Active Enzymes. Front Microbiol 2016; 7:1408. [PMID: 27667987 PMCID: PMC5016527 DOI: 10.3389/fmicb.2016.01408] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022] Open
Abstract
Cold-active enzymes constitute an attractive resource for biotechnological applications. Their high catalytic activity at temperatures below 25°C makes them excellent biocatalysts that eliminate the need of heating processes hampering the quality, sustainability, and cost-effectiveness of industrial production. Here we provide a review of the isolation and characterization of novel cold-active enzymes from microorganisms inhabiting different environments, including a revision of the latest techniques that have been used for accomplishing these paramount tasks. We address the progress made in the overexpression and purification of cold-adapted enzymes, the evolutionary and molecular basis of their high activity at low temperatures and the experimental and computational techniques used for their identification, along with protein engineering endeavors based on these observations to improve some of the properties of cold-adapted enzymes to better suit specific applications. We finally focus on examples of the evaluation of their potential use as biocatalysts under conditions that reproduce the challenges imposed by the use of solvents and additives in industrial processes and of the successful use of cold-adapted enzymes in biotechnological and industrial applications.
Collapse
Affiliation(s)
- Margarita Santiago
- Department of Chemical Engineering and Biotechnology, Centre for Biochemical Engineering and Biotechnology, Universidad de ChileSantiago, Chile
| | - César A. Ramírez-Sarmiento
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Ricardo A. Zamora
- Departamento de Biología, Facultad de Ciencias, Universidad de ChileSantiago, Chile
| | - Loreto P. Parra
- Schools of Engineering, Medicine and Biological Sciences, Institute for Biological and Medical Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
- Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de ChileSantiago, Chile
| |
Collapse
|