1
|
Finney AJ, Buchanan G, Palmer T, Coulthurst SJ, Sargent F. Activation of a [NiFe]-hydrogenase-4 isoenzyme by maturation proteases. MICROBIOLOGY (READING, ENGLAND) 2020; 166:854-860. [PMID: 32731905 PMCID: PMC7654741 DOI: 10.1099/mic.0.000963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
Abstract
Maturation of [NiFe]-hydrogenases often involves specific proteases responsible for cleavage of the catalytic subunits. Escherichia coli HycI is the protease dedicated to maturation of the Hydrogenase-3 isoenzyme, a component of formate hydrogenlyase-1. In this work, it is demonstrated that a Pectobacterium atrosepticum HycI homologue, HyfK, is required for hydrogenase-4 activity, a component of formate hydrogenlyase-2, in that bacterium. The P. atrosepticum ΔhyfK mutant phenotype could be rescued by either P. atrosepticum hyfK or E. coli hycI on a plasmid. Conversely, an E. coli ΔhycI mutant was complemented by either E. coli hycI or P. atrosepticum hyfK in trans. E. coli is a rare example of a bacterium containing both hydrogenase-3 and hydrogenase-4, however the operon encoding hydrogenase-4 has no maturation protease gene. This work suggests HycI should be sufficient for maturation of both E. coli formate hydrogenlyases, however no formate hydrogenlyase-2 activity was detected in any E. coli strains tested here.
Collapse
Affiliation(s)
- Alexander J. Finney
- School of Natural & Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Grant Buchanan
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tracy Palmer
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
- Institute of Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Frank Sargent
- School of Natural & Environmental Sciences, Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| |
Collapse
|
2
|
Structural Insight into [NiFe] Hydrogenase Maturation by Transient Complexes between Hyp Proteins. Acc Chem Res 2020; 53:875-886. [PMID: 32227866 DOI: 10.1021/acs.accounts.0c00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
[NiFe] hydrogenases catalyze reversible hydrogen production/consumption. The core unit of [NiFe] hydrogenase consists of a large and a small subunit. The active site of the large subunit of [NiFe] hydrogenases contains a NiFe(CN)2CO cluster. The biosynthesis/maturation of these hydrogenases is a complex and dynamic process catalyzed primarily by six Hyp proteins (HypABCDEF), which play central roles in the maturation process. HypA and HypB are involved in the Ni insertion, whereas HypC, D, E, and F are required for the biosynthesis, assembly, and insertion of the Fe(CN)2CO group. HypE and HypF catalyze the synthesis of the CN group through the carbamoylation and cyanation of the C-terminus cysteine of HypE. HypC and HypD form a scaffold for the assembly of the Fe(CN)2CO moiety.Over the last decades, a large number of biochemical studies on maturation proteins have been performed, revealing basic functions of each Hyp protein and the overall framework of the maturation pathway. However, it is only in the last 10 years that structural insight has been gained, and our group has made significant contributions to the structural biology of hydrogenase maturation proteins.Since our first publication, where crystal structures of three Hyp proteins have been determined, we have performed a series of structural studies of all six Hyp proteins from a hyperthermophilic archaeon Thermococcus kodakarensis, providing molecular details of each Hyp protein. We have also determined the crystal structures of transient complexes between Hyp proteins that are formed during the maturation process to sequentially incorporate the components of the NiFe(CN)2CO cluster to immature large subunits of [NiFe] hydrogenases. Such complexes, whose crystal structures are determined, include HypA-HypB, HypA-HyhL (hydrogenase large subunit), HypC-HypD, and HypC-HypD-HypE. The structures of the HypC-HypD, and HypCDE complexes reveal a sophisticated process of transient formation of the HypCDE complex, providing insight into the molecular basis of Fe atom cyanation. The high-resolution structures of the carbamoylated and cyanated forms of HypE reveal a structural basis for the biological conversion of primary amide to nitrile. The structure of the HypA-HypB complex elucidates nucleotide-dependent transient complex formation between these two proteins and the molecular basis of acquisition and release of labile Ni. Furthermore, our recent structure analysis of a complex between HypA and immature HyhL reveals that spatial rearrangement of both the N- and C-terminal tails of HyhL will occur upon the [NiFe] cluster insertion, which function as a key checkpoint for the maturation completion. This Account will focus on recent advances in structural studies of the Hyp proteins and on mechanistic insights into the [NiFe] hydrogenase maturation.
Collapse
|
3
|
Fukuda W, Yamori Y, Hamakawa M, Osaki M, Fukuda M, Hidese R, Kanesaki Y, Okamoto-Kainuma A, Kato S, Fujiwara S. Genes regulated by branched-chain polyamine in the hyperthermophilic archaeon Thermococcus kodakarensis. Amino Acids 2019; 52:287-299. [DOI: 10.1007/s00726-019-02793-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023]
|
4
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
5
|
Song Y, Liu M, Xie L, You C, Sun J, Zhang YHPJ. A Recombinant 12-His Tagged Pyrococcus furiosus Soluble [NiFe]-Hydrogenase I Overexpressed in Thermococcus kodakarensis KOD1 Facilitates Hydrogen-Powered in vitro NADH Regeneration. Biotechnol J 2018; 14:e1800301. [PMID: 30307115 DOI: 10.1002/biot.201800301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Indexed: 01/11/2023]
Abstract
Soluble hydrogenase I (SHI) from the hyperthermophilic archaeon Pyrococcus furiosus is a heterotetrameric [NiFe] hydrogenase that catalyzes the reversible reduction of protons by NADPH into hydrogen gas (H2 ). Here, the authors expressed the four αβγδ subunits of SHI encoded by one gene cluster in another hyperthermophilic archaeon, Thermococcus kodakarensis KOD1, which uses its hydrogenase maturation apparatus without the coexpression of native P. furiosus hydrogenase endopeptidases (maturation proteases). The SHI overexpression of T. kodakarensis resulted in more than 1200-fold enhancement in the hydrogenase activity of the cell lysate compared to that of the host strain with an empty vector. An active, purified 12-His tagged recombinant SHI (rSHI) is obtained by one-step affinity adsorption on nickel-charged resin. Size-exclusion chromatography show that purified rSHI is heterotetrameric and has a molecular mass of 150 kDa. The purified rSHI has a half-life of 70 h at 80 °C. This rSHI is used to design a novel in vitro synthetic enzymatic biosystem to convert pyruvate and H2 gas into lactate in a theoretical yield, whereas rSHI is used for NADPH regeneration; an FMN-containing diaphorase (DI) is used to match NADP-preferred SHI and NAD-preferred lactate dehydrogenase (LDH). This study provides a cost-efficient method to obtain hyperthermostable hydrogenases, which can be used in in vitro synthetic enzymatic biosystems for cofactor regeneration and hydrogen production.
Collapse
Affiliation(s)
- Yunhong Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Meixia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Leipeng Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China.,College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Junsong Sun
- Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Haike Road 99, Shanghai, 201210, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yi-Heng P Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
6
|
Wu CH, Ponir CA, Haja DK, Adams MWW. Improved production of the NiFe-hydrogenase from Pyrococcus furiosus by increased expression of maturation genes. Protein Eng Des Sel 2018; 31:337-344. [DOI: 10.1093/protein/gzy025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/13/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chang-Hao Wu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Cynthia A Ponir
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Dominik K Haja
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
7
|
Crystal structures of a [NiFe] hydrogenase large subunit HyhL in an immature state in complex with a Ni chaperone HypA. Proc Natl Acad Sci U S A 2018; 115:7045-7050. [PMID: 29915046 DOI: 10.1073/pnas.1801955115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ni-Fe clusters are inserted into the large subunit of [NiFe] hydrogenases by maturation proteins such as the Ni chaperone HypA via an unknown mechanism. We determined crystal structures of an immature large subunit HyhL complexed with HypA from Thermococcus kodakarensis Structure analysis revealed that the N-terminal region of HyhL extends outwards and interacts with the Ni-binding domain of HypA. Intriguingly, the C-terminal extension of immature HyhL, which is cleaved in the mature form, adopts a β-strand adjacent to its N-terminal β-strands. The position of the C-terminal extension corresponds to that of the N-terminal extension of a mature large subunit, preventing the access of endopeptidases to the cleavage site of HyhL. These findings suggest that Ni insertion into the active site induces spatial rearrangement of both the N- and C-terminal tails of HyhL, which function as a key checkpoint for the completion of the Ni-Fe cluster assembly.
Collapse
|
8
|
Kwon S, Nishitani Y, Hirao Y, Kanai T, Atomi H, Miki K. Structure of a [NiFe] hydrogenase maturation protease HycI provides insights into its substrate selectivity. Biochem Biophys Res Commun 2018. [DOI: 10.1016/j.bbrc.2018.03.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
International Conference on Extremophiles 2016. Extremophiles 2016; 21:1-2. [PMID: 28013384 DOI: 10.1007/s00792-016-0906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|