1
|
Popova L, Carr RA, Carabetta VJ. Recent Contributions of Proteomics to Our Understanding of Reversible N ε-Lysine Acylation in Bacteria. J Proteome Res 2024; 23:2733-2749. [PMID: 38442041 PMCID: PMC11296938 DOI: 10.1021/acs.jproteome.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Post-translational modifications (PTMs) have been extensively studied in both eukaryotes and prokaryotes. Lysine acetylation, originally thought to be a rare occurrence in bacteria, is now recognized as a prevalent and important PTM in more than 50 species. This expansion in interest in bacterial PTMs became possible with the advancement of mass spectrometry technology and improved reagents such as acyl-modification specific antibodies. In this Review, we discuss how mass spectrometry-based proteomic studies of lysine acetylation and other acyl modifications have contributed to our understanding of bacterial physiology, focusing on recently published studies from 2018 to 2023. We begin with a discussion of approaches used to study bacterial PTMs. Next, we discuss newly characterized acylomes, including acetylomes, succinylomes, and malonylomes, in different bacterial species. In addition, we examine proteomic contributions to our understanding of bacterial virulence and biofilm formation. Finally, we discuss the contributions of mass spectrometry to our understanding of the mechanisms of acetylation, both enzymatic and nonenzymatic. We end with a discussion of the current state of the field and possible future research avenues to explore.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Rachel A Carr
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
2
|
Lu H, Xue M, Nie X, Luo H, Tan Z, Yang X, Shi H, Li X, Wang T. Glycoside hydrolases in the biodegradation of lignocellulosic biomass. 3 Biotech 2023; 13:402. [PMID: 37982085 PMCID: PMC10654287 DOI: 10.1007/s13205-023-03819-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/21/2023] Open
Abstract
Lignocellulose is a plentiful and intricate biomass substance made up of cellulose, hemicellulose, and lignin. Cellulose and hemicellulose are polysaccharides characterized by different compositions and degrees of polymerization. As renewable resources, their applications are eco-friendly and can help reduce reliance on petrochemical resources. This review aims to illustrate cellulose, hemicellulose, and their structures and hydrolytic enzymes. To obtain desirable enzyme sources for the high hydrolysis of lignocellulose, highly stable, efficient and thermophilic enzyme sources, and new technologies, such as rational design and machine learning, have been introduced in detail. Generally, the efficient biodegradation of abundant natural biomass into fermentable sugars or other intermediates has great potential in practical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03819-1.
Collapse
Affiliation(s)
- Honglin Lu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Maoyuan Xue
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Hongzheng Luo
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Zhongbiao Tan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xiao Yang
- Department of Poultry Science, The University of Georgia, Athens, GA 30602 USA
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
3
|
Norris V, Kayser C, Muskhelishvili G, Konto-Ghiorghi Y. The roles of nucleoid-associated proteins and topoisomerases in chromosome structure, strand segregation, and the generation of phenotypic heterogeneity in bacteria. FEMS Microbiol Rev 2023; 47:fuac049. [PMID: 36549664 DOI: 10.1093/femsre/fuac049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
How to adapt to a changing environment is a fundamental, recurrent problem confronting cells. One solution is for cells to organize their constituents into a limited number of spatially extended, functionally relevant, macromolecular assemblies or hyperstructures, and then to segregate these hyperstructures asymmetrically into daughter cells. This asymmetric segregation becomes a particularly powerful way of generating a coherent phenotypic diversity when the segregation of certain hyperstructures is with only one of the parental DNA strands and when this pattern of segregation continues over successive generations. Candidate hyperstructures for such asymmetric segregation in prokaryotes include those containing the nucleoid-associated proteins (NAPs) and the topoisomerases. Another solution to the problem of creating a coherent phenotypic diversity is by creating a growth-environment-dependent gradient of supercoiling generated along the replication origin-to-terminus axis of the bacterial chromosome. This gradient is modulated by transcription, NAPs, and topoisomerases. Here, we focus primarily on two topoisomerases, TopoIV and DNA gyrase in Escherichia coli, on three of its NAPs (H-NS, HU, and IHF), and on the single-stranded binding protein, SSB. We propose that the combination of supercoiling-gradient-dependent and strand-segregation-dependent topoisomerase activities result in significant differences in the supercoiling of daughter chromosomes, and hence in the phenotypes of daughter cells.
Collapse
Affiliation(s)
- Vic Norris
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Clara Kayser
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| | - Georgi Muskhelishvili
- Agricultural University of Georgia, School of Natural Sciences, 0159 Tbilisi, Georgia
| | - Yoan Konto-Ghiorghi
- University of Rouen, Laboratory of Bacterial Communication and Anti-infection Strategies, EA 4312, 76821 Mont Saint Aignan, France
| |
Collapse
|
4
|
Zhang M, Liu T, Wang L, Huang Y, Fan R, Ma K, Kan Y, Tan M, Xu JY. Global landscape of lysine acylomes in Bacillus subtilis. J Proteomics 2023; 271:104767. [PMID: 36336260 DOI: 10.1016/j.jprot.2022.104767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Lysine acetylation is a common posttranslational modification that regulates numerous biochemical functions in both eukaryotic and prokaryotic species. In addition, several new non-acetyl acylations are structurally different from lysine acetylation and participate in diverse physiological functions. Here, a comprehensive analysis of several lysine acylomes was performed by combining the high-affinity antibody enrichment with high-resolution LC-MS/MS. In total, we identified 2536 lysine acetylated sites, 4723 propionylated sites, 2150 succinylated sites and 3001 malonylated sites in Bacillus subtilis, respectively. These acylated proteins account for 35.8% of total protein in this bacterium. The four lysine acylomes showed a motif preference for glutamate surrounding the modified lysine residues, and a functional preference for several metabolic pathways, such as carbon metabolism, fatty acid metabolism, and ribosome. In addition, more protein-protein interaction clusters were identified in the propionylated substrates than other three lysine acylomes. In summary, our study presents a global landscape of acylation in the Gram-positive model organism Bacillus and their potential functions in metabolism and physiology.
Collapse
Affiliation(s)
- Mingya Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - TianXian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Le Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Rufeng Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ke Ma
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunbo Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Minjia Tan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China.
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
| |
Collapse
|
5
|
Chen Y, Li X, Li S, Xu Y. Effect of C/N ration on disposal of pig carcass by co-composting with swine manure: experiment at laboratory scale. ENVIRONMENTAL TECHNOLOGY 2021; 42:4415-4425. [PMID: 32324113 DOI: 10.1080/09593330.2020.1760358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Disposal of animal carcasses by co-composting with animal waste usually selected conventional carbon to nitrogen (C/N) ratio around 25:1, in which the compost is widely used throughout the world. In this study, the pig carcass tissue blocks were sampled for composting at a laboratory scale to evaluate the effect of C/N ratio on the pig carcass compost. The time of thermophilic phase between 60 °C - 70 °C at a lower C/N ratio of 20:1 was significantly longer than that at the conventional C/N ratio, and it was the only one with the temperature beyond 70 °C that lasted for 2 days. Germination index and T value (the final C/N ratio / the initial C/N ratio) of the treatment with a C/N ratio of 20:1 were 94.67% and 0.69, respectively, meeting the standards of animal carcass compost. The degradation rate was 75.67%, and no significant difference was obtained as compared to the conventional C/N ratio groups. Organic fertilizer produced from the treatment with a C/N ratio of 20:1 was selected to evaluate the fertility by pot experiment of Cayenne pepper compared with chemical fertilizer. The results showed that organic fertilizer from this treatment could significantly improve the growth of Cayenne pepper. Overall, the use of the lower C/N ratio of 20:1 in the disposal of pig carcass by co-composting with swine manure could achieve the similar degradation rate as well as the maturity and stability of organic fertilizer as compared with the traditional C/N ratio at lab scale.
Collapse
Affiliation(s)
- Yan Chen
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, People's Republic of China
| | - Shuying Li
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, People's Republic of China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, People's Republic of China
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, People's Republic of China
- Dalian SEM Bio-Engineering Technology Co. Ltd., Dalian, People's Republic of China
| |
Collapse
|
6
|
Miao Y, Wang Y, Huang D, Lin X, Lin Z, Lin X. Profile of protein lysine propionylation in Aeromonas hydrophila and its role in enzymatic regulation. Biochem Biophys Res Commun 2021; 562:1-8. [PMID: 34030039 DOI: 10.1016/j.bbrc.2021.05.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022]
Abstract
Protein lysine propionylation (Kpr) modification is a novel post-translational modification (PTM) of prokaryotic cells that was recently discovered; however, it is not clear how this modification regulates bacterial life. In this study, the protein Kpr modification profile in Aeromonas hydrophila was identified by high specificity antibody-based affinity enrichment combined with high resolution LC MS/MS. A total of 98 lysine-propionylated peptides with 59 Kpr proteins were identified, most of which were associated with energy metabolism, transcription and translation processes. To further understand the role of Kpr modified proteins, the K168 site on malate dehydrogenase (MDH) and K608 site on acetyl-coenzyme A synthetase (AcsA) were subjected to site-directed mutation to arginine (R) and glutamine (Q) to simulate deacylation and propionylation, respectively. Subsequent measurement of the enzymatic activity showed that the K168 site of Kpr modification on MDH may negatively regulate the MDH enzymatic activity while also affecting the survival of mdh derivatives when using glucose as the carbon source, whereas Kpr modification of K608 of AcsA does not. Overall, the results of this study indicate that protein Kpr modification plays an important role in bacterial biological functions, especially those involved in the activity of metabolic enzymes.
Collapse
Affiliation(s)
- Yuxuan Miao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Dongping Huang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiaoke Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Zhenping Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, PR China; Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, PR China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
7
|
Li A, Deng Y, Tan Y, Chen M. A Transfer Learning-Based Approach for Lysine Propionylation Prediction. Front Physiol 2021; 12:658633. [PMID: 33967828 PMCID: PMC8096918 DOI: 10.3389/fphys.2021.658633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Lysine propionylation is a newly discovered posttranslational modification (PTM) and plays a key role in the cellular process. Although proteomics techniques was capable of detecting propionylation, large-scale detection was still challenging. To bridge this gap, we presented a transfer learning-based method for computationally predicting propionylation sites. The recurrent neural network-based deep learning model was trained firstly by the malonylation and then fine-tuned by the propionylation. The trained model served as feature extractor where protein sequences as input were translated into numerical vectors. The support vector machine was used as the final classifier. The proposed method reached a matthews correlation coefficient (MCC) of 0.6615 on the 10-fold crossvalidation and 0.3174 on the independent test, outperforming state-of-the-art methods. The enrichment analysis indicated that the propionylation was associated with these GO terms (GO:0016620, GO:0051287, GO:0003735, GO:0006096, and GO:0005737) and with metabolism. We developed a user-friendly online tool for predicting propoinylation sites which is available at http://47.113.117.61/.
Collapse
Affiliation(s)
- Ang Li
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Yingwei Deng
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Yan Tan
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| | - Min Chen
- School of Computer Science and Technology, Hunan Institute of Technology, Hengyang, China
| |
Collapse
|
8
|
Abstract
Acetylation was initially discovered as a post-translational modification (PTM) on the unstructured, highly basic N-terminal tails of eukaryotic histones in the 1960s. Histone acetylation constitutes part of the "histone code", which regulates chromosome compaction and various DNA processes such as gene expression, recombination, and DNA replication. In bacteria, nucleoid-associated proteins (NAPs) are responsible these functions in that they organize and compact the chromosome and regulate some DNA processes. The highly conserved DNABII family of proteins are considered functional homologues of eukaryotic histones despite having no sequence or structural conservation. Within the past decade, a growing interest in Nε-lysine acetylation led to the discovery that hundreds of bacterial proteins are acetylated with diverse cellular functions, in direct contrast to the original thought that this was a rare phenomenon. Similarly, other previously undiscovered bacterial PTMs, like serine, threonine, and tyrosine phosphorylation, have also been characterized. In this review, the various PTMs that were discovered among DNABII family proteins, specifically histone-like protein (HU) orthologues, from large-scale proteomic studies are discussed. The functional significance of these modifications and the enzymes involved are also addressed. The discovery of novel PTMs on these proteins begs this question: is there a histone-like code in bacteria?
Collapse
Affiliation(s)
- Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey 08103, United States
| |
Collapse
|
9
|
Xu X, Cao X, Yang J, Chen L, Liu B, Liu T, Jin Q. Proteome-Wide Identification of Lysine Propionylation in the Conidial and Mycelial Stages of Trichophyton rubrum. Front Microbiol 2019; 10:2613. [PMID: 31798556 PMCID: PMC6861857 DOI: 10.3389/fmicb.2019.02613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/28/2019] [Indexed: 01/05/2023] Open
Abstract
Posttranslational modifications (PTMs) exist in a wide variety of organisms and play key roles in regulating various essential biological processes. Lysine propionylation is a newly discovered PTM that has rarely been identified in fungi. Trichophyton rubrum (T. rubrum) is one of the most common fungal pathogens in the world and has been studied as an important model organism of anthropic pathogenic filamentous fungi. In this study, we performed a proteome-wide propionylation analysis in the conidial and mycelial stages of T. rubrum. A total of 157 propionylated sites on 115 proteins were identified, and the high confidence of propionylation identification was validated by parallel reaction monitoring (PRM) assay. The results show that the propionylated proteins were mostly involved in various metabolic pathways. Histones and 15 pathogenicity-related proteins were also targets for propionylation modification, suggesting their roles in epigenetic regulation and pathogenicity. A comparison of the conidial and mycelial stages revealed that most propionylated proteins and sites were growth-stage specific and independent of protein abundance. Based on the function classifications, the propionylated proteins had a similar distribution in both stages; however, some differences were also identified. Furthermore, our results show that the concentration of propionyl-CoA had a significant influence on the propionylation level. In addition to the acetylation, succinylation and propionylation identified in T. rubrum, 26 other PTMs were also found to exist in this fungus. Overall, our study provides the first global propionylation profile of a pathogenic fungus. These results would be a foundation for further research on the regulation mechanism of propionylation in T. rubrum, which will enhance our understanding of the physiological features of T. rubrum and provide some clues for the exploration of improved therapies to treat this medically important fungus.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Cao J, Wang T, Wang Q, Zheng X, Huang L. Functional Insights Into Protein Acetylation in the Hyperthermophilic Archaeon Sulfolobus islandicus. Mol Cell Proteomics 2019; 18:1572-1587. [PMID: 31182439 PMCID: PMC6683002 DOI: 10.1074/mcp.ra119.001312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/02/2019] [Indexed: 01/03/2023] Open
Abstract
Proteins undergo acetylation at the Nε-amino group of lysine residues and the Nα-amino group of the N terminus in Archaea as in Bacteria and Eukarya. However, the extent, pattern and roles of the modifications in Archaea remain poorly understood. Here we report the proteomic analyses of a wild-type Sulfolobus islandicus strain and its mutant derivative strains lacking either a homolog of the protein acetyltransferase Pat (ΔSisPat) or a homolog of the Nt-acetyltransferase Ard1 (ΔSisArd1). A total of 1708 Nε-acetylated lysine residues in 684 proteins (26% of the total proteins), and 158 Nt-acetylated proteins (44% of the identified proteins) were found in S. islandicus ΔSisArd1 grew more slowly than the parental strain, whereas ΔSisPat showed no significant growth defects. Only 24 out of the 1503 quantifiable Nε-acetylated lysine residues were differentially acetylated, and all but one of the 24 residues were less acetylated by >1.3 fold in ΔSisPat than in the parental strain, indicating the narrow substrate specificity of the enzyme. Six acyl-CoA synthetases were the preferred substrates of SisPat in vivo, suggesting that Nε-acetylation by the acetyltransferase is involved in maintaining metabolic balance in the cell. Acetylation of acyl-CoA synthetases by SisPat occurred at a sequence motif conserved among all three domains of life. On the other hand, 92% of the acetylated N termini identified were acetylated by SisArd1 in the cell. The enzyme exhibited broad substrate specificity and could modify nearly all types of the target N termini of human NatA-NatF. The deletion of the SisArd1 gene altered the cellular levels of 18% of the quantifiable proteins (1518) by >1.5 fold. Consistent with the growth phenotype of ΔSisArd1, the cellular levels of proteins involved in cell division and cell cycle control, DNA replication, and purine synthesis were significantly lowered in the mutant than those in the parental strain.
Collapse
Affiliation(s)
- Jingjing Cao
- ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China; §College of Life Science, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Tongkun Wang
- ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China; §College of Life Science, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Qian Wang
- ¶Core Facility of Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaowei Zheng
- ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China; §College of Life Science, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Li Huang
- ‡State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China; §College of Life Science, University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
11
|
Gaviard C, Cosette P, Jouenne T, Hardouin J. LasB and CbpD Virulence Factors of Pseudomonas aeruginosa Carry Multiple Post-Translational Modifications on Their Lysine Residues. J Proteome Res 2019; 18:923-933. [PMID: 30672296 DOI: 10.1021/acs.jproteome.8b00556] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a multi-drug resistant human pathogen largely involved in nosocomial infections. Today, effective antibacterial agents are lacking. Exploring the bacterial physiology at the post-translational modifications (PTM) level may contribute to the renewal of fighting strategies. Indeed, some correlations between PTMs and the bacterial virulence, adaptation, and resistance have been shown. In a previous study performed in P. aeruginosa, we reported that many virulence factors like chitin-binding protein CbpD and elastase LasB were multiphosphorylated. Besides phosphorylation, other PTMs, like those occurring on lysine, seem to play key roles in bacteria. In the present study, we investigated for the first time the lysine succinylome and acetylome of the extracellular compartment of P. aeruginosa by using a two-dimensional immunoaffinity approach. Some virulence factors were identified as multimodified on lysine residues, among them, LasB and CbpD. Lysine can be modified by a wide range of chemical groups. In order to check the presence of other chemical groups on modified lysines identified on LasB and CbpD, we used 1- and 2- dimensional gel electrophoresis approaches to target lysine modified by 7 other modifications: butyrylation, crotonylation, dimethylation, malonylation, methylation, propionylation, and trimethylation. We showed that some lysines of these two virulence factors were modified by these 9 different PTMs. Interestingly, we found that the PTMs recovered on these two virulence factors were different than those previously reported in the intracellular compartment.
Collapse
Affiliation(s)
- Charlotte Gaviard
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Pascal Cosette
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Thierry Jouenne
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Julie Hardouin
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| |
Collapse
|
12
|
Post-translational modification of nucleoid-associated proteins: an extra layer of functional modulation in bacteria? Biochem Soc Trans 2018; 46:1381-1392. [PMID: 30287510 DOI: 10.1042/bst20180488] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Post-translational modification (PTM) of histones has been investigated in eukaryotes for years, revealing its widespread occurrence and functional importance. Many PTMs affect chromatin folding and gene activity. Only recently the occurrence of such modifications has been recognized in bacteria. However, it is unclear whether PTM of the bacterial counterparts of eukaryotic histones, nucleoid-associated proteins (NAPs), bears a comparable significance. Here, we scrutinize proteome mass spectrometry data for PTMs of the four most abundantly present NAPs in Escherichia coli (H-NS, HU, IHF and FIS). This approach allowed us to identify a total of 101 unique PTMs in the 11 independent proteomic studies covered in this review. Combined with structural and genetic information on these proteins, we describe potential effects of these modifications (perturbed DNA-binding, structural integrity or interaction with other proteins) on their function.
Collapse
|
13
|
Olesen SV, Rajabi N, Svensson B, Olsen CA, Madsen AS. An NAD +-Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium Lactobacillus acidophilus NCFM. Biochemistry 2018; 57:3903-3915. [PMID: 29863862 DOI: 10.1021/acs.biochem.8b00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sirtuins, a group of NAD+-dependent deacylases, have emerged as the key connection between NAD+ metabolism and aging. This class of enzymes hydrolyzes a range of ε- N-acyllysine PTMs, and determining the repertoire of catalyzed deacylation reactions is of high importance to fully elucidate the roles of a given sirtuin. Here we have identified and produced two potential sirtuins from the probiotic bacterium Lactobacillus acidophilus NCFM. Screening more than 80 different substrates, covering 26 acyl groups on five peptide scaffolds, demonstrated that one of the investigated proteins, Sir2La, is a bona fide NAD+-dependent sirtuin, catalyzing hydrolysis of acetyl-, propionyl-, and butyryllysine. Further substantiating the identity of Sir2La as a sirtuin, known sirtuin inhibitors, nicotinamide and suramin, as well as a thioacetyllysine compound inhibit the deacylase activity in a concentration-dependent manner. On the basis of steady-state kinetics, Sir2La showed a slight preference for propionyllysine (Kpro) over acetyllysine (Kac). For nonfluorogenic peptide substrates, the preference is driven by a remarkably low KM (280 nM vs 700 nM, for Kpro and Kac, respectively), whereas kcat was similar (21 × 10-3 s-1). Moreover, while NAD+ is a prerequisite for Sir2La-mediated deacylation, Sir2La has a very high KM for NAD+ compared to the expected levels of the dinucleotide in L. acidophilus. Sir2La is the first sirtuin from Lactobacillales and of the Gram-positive bacterial subclass of sirtuins to be functionally characterized. The ability to hydrolyze propionyl- and butyryllysine emphasizes the relevance of further exploring the role of other short-chain acyl moieties as PTMs.
Collapse
Affiliation(s)
- Sita V Olesen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Nima Rajabi
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine , Technical University of Denmark , DK-2800 Kongens Lyngby , Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Andreas S Madsen
- Center for Biopharmaceuticals, Faculty of Health and Medicinal Sciences , University of Copenhagen , DK-2100 Copenhagen , Denmark.,Department of Drug Design and Pharmacology , University of Copenhagen , DK-2100 Copenhagen , Denmark
| |
Collapse
|
14
|
Vasileva D, Suzuki-Minakuchi C, Kosono S, Yoshida M, Okada K, Nojiri H. Proteome and acylome analyses of the functional interaction network between the carbazole-degradative plasmid pCAR1 and host Pseudomonas putida KT2440. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:299-309. [PMID: 29573367 DOI: 10.1111/1758-2229.12639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
Understanding the interplay between a plasmid and its host system is a bottleneck towards prediction of the fate of plasmid-harbouring strains in the natural environments. Here, we studied the impact of the conjugative plasmid pCAR1, involved in carbazole degradation, on the proteome of Pseudomonas putida KT2440 using SILAC method. Furthermore, we investigated two acyl lysine modifications (acetylation and succinylation) that respond to the metabolic status of the cell and are implicated in regulation of various cellular processes. The total proteome analysis revealed that the abundance of key proteins involved in metabolism, signal transduction and motility was affected by pCAR1 carriage. In total, we identified 1359 unique acetylation sites on 637 proteins and 567 unique succinylation sites on 259 proteins. Changes in the acylation status of proteins involved in metabolism and translation by pCAR1 carriage were detected. Remarkably, acylation was identified on proteins involved in important plasmid functions, including partitioning and carbazole degradation, and on nucleoid-associated proteins that play a key role in the functional interaction with the chromosome. This study provides a novel insight on the functional consequences of plasmid carriage and improves our understanding of the plasmid-host cross-talk.
Collapse
Affiliation(s)
- Delyana Vasileva
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | | | - Saori Kosono
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science Wako, Saitama, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science Wako, Saitama, Japan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Gaviard C, Broutin I, Cosette P, Dé E, Jouenne T, Hardouin J. Lysine Succinylation and Acetylation in Pseudomonas aeruginosa. J Proteome Res 2018; 17:2449-2459. [DOI: 10.1021/acs.jproteome.8b00210] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Charlotte Gaviard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Isabelle Broutin
- LCRB, UMR 8015, CNRS, University Paris Descartes, Sorbonne Paris City, 75270 Paris Cedex 06, France
| | - Pascal Cosette
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Emmanuelle Dé
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
- PISSARO Proteomic Facility, IRIB, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
16
|
Wang LN, Shi SP, Wen PP, Zhou ZY, Qiu JD. Computing Prediction and Functional Analysis of Prokaryotic Propionylation. J Chem Inf Model 2017; 57:2896-2904. [DOI: 10.1021/acs.jcim.7b00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Li-Na Wang
- College
of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
- Department
of Sciences, Nanchang Institute of Technology, Nanchang 330099, China
| | - Shao-Ping Shi
- College
of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Ping-Ping Wen
- College
of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Zhi-You Zhou
- College
of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- College
of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang 330031, China
- Department
of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| |
Collapse
|