1
|
Thompson TP, Gilmore BF. Exploring halophilic environments as a source of new antibiotics. Crit Rev Microbiol 2024; 50:341-370. [PMID: 37079280 DOI: 10.1080/1040841x.2023.2197491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/25/2023] [Indexed: 04/21/2023]
Abstract
Microbial natural products from microbes in extreme environments, including haloarchaea, and halophilic bacteria, possess a huge capacity to produce novel antibiotics. Additionally, enhanced isolation techniques and improved tools for genomic mining have expanded the efficiencies in the antibiotic discovery process. This review article provides a detailed overview of known antimicrobial compounds produced by halophiles from all three domains of life. We summarize that while halophilic bacteria, in particular actinomycetes, contribute the vast majority of these compounds the importance of understudied halophiles from other domains of life requires additional consideration. Finally, we conclude by discussing upcoming technologies- enhanced isolation and metagenomic screening, as tools that will be required to overcome the barriers to antimicrobial drug discovery. This review highlights the potential of these microbes from extreme environments, and their importance to the wider scientific community, with the hope of provoking discussion and collaborations within halophile biodiscovery. Importantly, we emphasize the importance of bioprospecting from communities of lesser-studied halophilic and halotolerant microorganisms as sources of novel therapeutically relevant chemical diversity to combat the high rediscovery rates. The complexity of halophiles will necessitate a multitude of scientific disciplines to unravel their potential and therefore this review reflects these research communities.
Collapse
Affiliation(s)
- Thomas P Thompson
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Brendan F Gilmore
- Biofilm Research Group, School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
2
|
Scale-Up Studies for Polyhydroxyalkanoate and Halocin Production by <i>Halomonas</i> Sp. as Potential Biomedical Materials. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-yqf2wv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhydroxyalkanoates (PHA) are the biomaterials isolated naturally from bacterial strains. These are present in granules and accumulated intracellularly for storage and energy uptake in stressed conditions. This work was based on the extraction of polyhydroxyalkanoates from haloarchaeal strains isolated from samples of a salt mine and Halocin activity screening of these isolates. For the screening of polyhydroxyalkanoates, Nile Blue and Sudan Black Staining were performed. After confirmation and theoretical determination, polyhydroxyalkanoates extraction was done by sodium hypochlorite digestion and solvent extraction by chloroform method in combination. Polyhydroxyalkanoates production was calculated along with the determination of biomass. Halocin activity of these strains was also screened at different intervals. Isolated strains were identified by 16S RNA gene sequencing. Polyhydroxyalkanoates polymer was produced in form of biofilms and brittle crystals. Halocin activity was exhibited by four strains, among which confirmed halocin activity was shown by strain K7. The remarkable results showed that polyhydroxyalkanoates can replace synthetic plastics which are not environment friendly as they cause environmental pollution – a major threat to Earth rising gradually. Therefore, by switching to the use of biodegradable bioplastics from the use of synthetic plastics, it would be beneficial to the ecosphere.
Collapse
|
3
|
Martínez GM, Pire C, Martínez-Espinosa RM. Hypersaline environments as natural sources of microbes with potential applications in biotechnology: The case of solar evaporation systems to produce salt in Alicante County (Spain). CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100136. [PMID: 35909606 PMCID: PMC9325878 DOI: 10.1016/j.crmicr.2022.100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Extremophilic microbes show a unique metabolism due to the adaptations they display to deal with extreme environmental parameters characterizing the extreme ecosystems that they inhabit (high salt concentration, high temperatures, and extreme pH values, high exposure to solar radiation etc.). Halophilic microorganisms characterised and isolated from saltmarshes, brines, salted ponds, salty lagoons etc. have recently attracted attention due to their potential biotechnological applications (as whole cells used for different purposes like wastewater treatments, or their biomolecules: enzymes, antibiotics, carotenoids, bioplastics). Alicante county (southeast of Spain) accounts for a significant number of salty environments like coastal or inland salty ponds from where sodium chloride (NaCl)is obtained, marshes, salty lagoons, etc. The best system characterised so far from a microbiological point of view is "Salinas de Santa Pola", also termed "Salinas Bras del Port". However, there are many other salty environments to be explored, like the natural park of Torrevieja and la Mata lagoons, salty lagoon located in Calpe city or inland salted ponds like those located in the northwest of the county. This review summarises the most relevant biotechnological applications of halophilic microbes described up to now. In addition, special attention is focused on ecosystems such as the lagoons of Torrevieja or inland salt marshes as natural environments whose microbial biodiversity is worthy of being studied in search of new strains and species with the aim to analyze their potential biotechnological applications (pharmaceutical, food industry, biomedicine, etc.).
Collapse
Affiliation(s)
- Guillermo Martínez Martínez
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, Alicante, E-03080 Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, Alicante, E-03080 Spain
| | - Carmen Pire
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, Alicante, E-03080 Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, Alicante, E-03080 Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, Alicante, E-03080 Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, Alicante, E-03080 Spain
| |
Collapse
|
4
|
Kumar V, Singh B, van Belkum MJ, Diep DB, Chikindas ML, Ermakov AM, Tiwari SK. Halocins, natural antimicrobials of Archaea: Exotic or special or both? Biotechnol Adv 2021; 53:107834. [PMID: 34509601 DOI: 10.1016/j.biotechadv.2021.107834] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023]
Abstract
Haloarchaea are adapted to survive under extreme saline conditions by accumulating osmolytes and salts to counteract the high osmotic pressure in their habitats. As a consequence, their proteins have evolved to remain active, or even most active, at very high ionic strength. Halocins are proteinaceous antimicrobial substances that are ribosomally-synthesized by haloarchaea and they provide the producers an advantage in the competition for nutrients and ecological niches. These antimicrobials are stable at high temperature, elevated salt concentrations, and alkaline pH conditions. These properties have endowed them with great potential in diverse biotechnological applications, which involve extreme processing conditions (such as high salt concentrations, high pressure, or high temperatures). They kill target cells by inhibition of Na+/H+ antiporter in the membrane or modification/disruption of the cell membrane leading to cell lysis. In general, the taxonomy of haloarchaea and their typical phenotypic and genotypic characteristics are well studied; however, information regarding their halocins, especially aspects related to genetics, biosynthetic pathways, mechanism of action, and structure-function relationship is very limited. A few studies have demonstrated the potential applications of halocins in the preservation of salted food products and brine-cured hides in leather industries, protecting the myocardium from ischemia and reperfusion injury, as well as from life-threatening diseases such as cardiac arrest and cancers. In recent years, genome mining has been an essential tool to decipher the genetic basis of halocin biosynthesis. Nevertheless, this is likely the tip of the iceberg as genome analyses have revealed many putative halocins in databases waiting for further investigation. Identification and characterization of this source of halocins may lead to antimicrobials for future therapeutics and/or food preservation. Hence, the present review analyzes different aspects of halocins such as biosynthesis, mechanism of action against target cells, and potential biotechnological applications.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India; Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali 123031, Mahendergarh, Haryana, India; Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1430, Norway
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA; Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don 344002, Russia; I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Alexey M Ermakov
- I. M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
5
|
Kaur R, Tiwari SK. Purification and Characterization of a New Halocin HA4 from Haloferax larsenii HA4 Isolated from a Salt Lake. Probiotics Antimicrob Proteins 2021; 13:1458-1466. [PMID: 34286419 DOI: 10.1007/s12602-021-09823-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
Halocins are antimicrobial peptides secreted by different members of haloarchaea. Halocin HA4 was purified from Haloferax larsenii HA4 using combination of ultrafiltration and chromatographic techniques. It was found to be ~ 14 kDa with unique N-terminal sequence, H2N-AEEEIFXPDX, which did not show homology with the known sequence suggesting a new/novel compound. It was found to be heat resistant up to 100 °C, stable at pH 2.0-10.0, and retained complete activity in the presence of different organic compounds such as methanol, ethanol, acetone, isopropanol, ethyl acetate, Tween 80, acetonitrile, SDS, Triton X-100, and urea. However, complete activity was reduced after the treatment with trypsin, papain, and proteinase K suggesting proteinaceous nature of the compound. The cytocidal nature of halocin HA4 was evidenced with complete loss of viable count of indicator strain, H. larsenii HA10. The change in FTIR spectrum of halocin-treated cells suggested halocin HA4 interacts with cell membrane and nucleic acids of the target cells. Thus, we report a new halocin inhibitory to related strains and may be applied in the preservation of salted foods and leather hides in the respective industries.
Collapse
Affiliation(s)
- Ramanjeet Kaur
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Santosh Kumar Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
6
|
Kasirajan L, Maupin-Furlow JA. Halophilic archaea and their potential to generate renewable fuels and chemicals. Biotechnol Bioeng 2020; 118:1066-1090. [PMID: 33241850 DOI: 10.1002/bit.27639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022]
Abstract
Lignocellulosic biofuels and chemicals have great potential to reduce our dependence on fossil fuels and mitigate air pollution by cutting down on greenhouse gas emissions. Chemical, thermal, and enzymatic processes are used to release the sugars from the lignocellulosic biomass for conversion to biofuels. These processes often operate at extreme pH conditions, high salt concentrations, and/or high temperature. These harsh treatments add to the cost of the biofuels, as most known biocatalysts do not operate under these conditions. To increase the economic feasibility of biofuel production, microorganisms that thrive in extreme conditions are considered as ideal resources to generate biofuels and value-added products. Halophilic archaea (haloarchaea) are isolated from hypersaline ecosystems with high salt concentrations approaching saturation (1.5-5 M salt concentration) including environments with extremes in pH and/or temperature. The unique traits of haloarchaea and their enzymes that enable them to sustain catalytic activity in these environments make them attractive resources for use in bioconversion processes that must occur across a wide range of industrial conditions. Biocatalysts (enzymes) derived from haloarchaea occupy a unique niche in organic solvent, salt-based, and detergent industries. This review focuses on the use of haloarchaea and their enzymes to develop and improve biofuel production. The review also highlights how haloarchaea produce value-added products, such as antibiotics, carotenoids, and bioplastic precursors, and can do so using feedstocks considered "too salty" for most microbial processes including wastes from the olive-mill, shell fish, and biodiesel industries.
Collapse
Affiliation(s)
- Lakshmi Kasirajan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Division of Crop Improvement, ICAR Sugarcane Breeding Institute, Coimbatore, India
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA.,Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Gómez-Villegas P, Vigara J, Vila M, Varela J, Barreira L, Léon R. Antioxidant, Antimicrobial, and Bioactive Potential of Two New Haloarchaeal Strains Isolated from Odiel Salterns (Southwest Spain). BIOLOGY 2020; 9:biology9090298. [PMID: 32962162 PMCID: PMC7564620 DOI: 10.3390/biology9090298] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 12/23/2022]
Abstract
Simple Summary Halophilic archaea are microorganisms that inhabit in extreme environments for life, under salt saturation, high temperature and elevated UV radiation. The interest in these microorganisms lies on the properties of their molecules, that present high salt and temperature tolerance, as well as, antioxidant power, being an excellent source of compounds for several biotechnological applications. However, the bioactive properties from haloarcahaea remain scarcely studied compared to other groups as plants or algae, usually reported as good health promoters. In this work we describe the isolation and the molecular identification of two new haloarchaeal strains from Odiel salterns (SW Spain), and the antioxidant, antimicrobial and bioactive potential of their extracts. The results revealed that the extracts obtained with acetone presented the highest activities in the antioxidant, antimicrobial and anti-inflammatory assays, becoming a promising source of metabolites with applied interest in pharmacy, cosmetics and food industry. Abstract The need to survive in extreme environments has furnished haloarchaea with a series of components specially adapted to work in such conditions. The possible application of these molecules in the pharmaceutical and industrial fields has received increasing attention; however, many potential bioactivities of haloarchaea are still poorly explored. In this paper, we describe the isolation and identification of two new haloarchaeal strains from the saltern ponds located in the marshlands of the Odiel River, in the southwest of Spain, as well as the in vitro assessment of their antioxidant, antimicrobial, and bioactive properties. The acetone extract obtained from the new isolated Haloarcula strain exhibited the highest antioxidant activity, while the acetone extracts from both isolated strains demonstrated a strong antimicrobial activity, especially against other halophilic microorganisms. Moreover, these extracts showed a remarkable ability to inhibit the enzyme cyclooxygenase-2 and to activate the melanogenic enzyme tyrosinase, indicating their potential against chronic inflammation and skin pigmentation disorders. Finally, the aqueous protein-rich extracts obtained from both haloarchaea exhibited an important inhibitory effect on the activity of the acetylcholinesterase enzyme, involved in the hydrolysis of cholinergic neurotransmitters and related to several neurological diseases.
Collapse
Affiliation(s)
- Patricia Gómez-Villegas
- Laboratory of Biochemistry, Department of Chemistry, University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.); (M.V.)
| | - Javier Vigara
- Laboratory of Biochemistry, Department of Chemistry, University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.); (M.V.)
| | - Marta Vila
- Laboratory of Biochemistry, Department of Chemistry, University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.); (M.V.)
| | - João Varela
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (J.V.); (L.B.)
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139 Faro, Portugal; (J.V.); (L.B.)
| | - Rosa Léon
- Laboratory of Biochemistry, Department of Chemistry, University of Huelva, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain; (P.G.-V.); (J.V.); (M.V.)
- Correspondence: ; Tel.: +34-95-921-9951
| |
Collapse
|
8
|
Kaur R, Tiwari SK. Identification and characterization of a halocin-producing haloarchaeon isolated from Pachpadra salt lake. Lett Appl Microbiol 2020; 71:620-626. [PMID: 32844475 DOI: 10.1111/lam.13377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 01/06/2023]
Abstract
Haloarchaea are known to produce antimicrobial proteins, halocins which are generally stable at extreme conditions suggesting their potential biotechnological applications. Here, we report a halocin-producing haloarchaeon isolated from salt lake and identified as Haloferax larsenii HA4 using partial 16S rDNA sequence and biochemical properties. Whole-cell methanolysate showed ether-linked lipids, which is a characteristic feature of haloarchaea. Strain HA4 was able to grow at pH 6·0-10·0 and 15-30% NaCl. The growth response was normal but antimicrobial activity was detected only during the log-phase. Crude halocin HA4 was active in the pH range of pH 2·0-10·0 with stability up to 100°C. Cell-free supernatant (CFS) was also stable in different organic solvents and detergents tested. However, halocin activity was reduced after treatment with proteinase K suggesting the proteinaceous nature of the active compound. Concentrated CFS showed the presence of several proteins from 6·5-66 kDa but bioassay suggested ~14 kDa protein as halocin. Crude halocin preparation showed cytocidal activity against indicator strain, H. larsenii HA10 and inhibited the growth of other related strains such as H. larsenii HA3, HA8, HA9 and HA10.
Collapse
Affiliation(s)
- R Kaur
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - S K Tiwari
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
9
|
Bioactive Potential of Extracts of Labrenzia aggregata Strain USBA 371, a Halophilic Bacterium Isolated from a Terrestrial Source. Molecules 2020; 25:molecules25112546. [PMID: 32486092 PMCID: PMC7321072 DOI: 10.3390/molecules25112546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 01/15/2023] Open
Abstract
Previous studies revealed the potential of Labrenzia aggregata USBA 371 to produce cytotoxic metabolites. This study explores its metabolic diversity and compounds involved in its cytotoxic activity. Extracts from the extracellular fraction of strain USBA 371 showed high levels of cytotoxic activity associated with the production of diketopiperazines (DKPs). We purified two compounds and a mixture of two other compounds from this fraction. Their structures were characterized by 1D and 2D nuclear magnetic resonance (NMR). The purified compounds were evaluated for additional cytotoxic activities. Compound 1 (cyclo (l-Pro-l-Tyr)) showed cytotoxicity to the following cancer cell lines: breast cancer 4T1 (IC50 57.09 ± 2.11 µM), 4T1H17 (IC50 40.38 ± 1.94), MCF-7 (IC50 87.74 ± 2.32 µM), murine melanoma B16 (IC50 80.87 ± 3.67), human uterus sarcoma MES-SA/Dx5 P-pg (−) (IC50 291.32 ± 5.64) and MES-SA/Dx5 P-pg (+) (IC50 225.28 ± 1.23), and murine colon MCA 38 (IC50 29.85 ± 1.55). In order to elucidate the biosynthetic route of the production of DKPs and other secondary metabolites, we sequenced the genome of L. aggregata USBA 371. We found no evidence for biosynthetic pathways associated with cyclodipeptide synthases (CDPSs) or non-ribosomal peptides (NRPS), but based on proteogenomic analysis we suggest that they are produced by proteolytic enzymes. This is the first report in which the cytotoxic effect of cyclo (l-Pro-l-Tyr) produced by an organism of the genus Labrenzia has been evaluated against several cancer cell lines.
Collapse
|
10
|
de Castro I, Mendo S, Caetano T. Antibiotics from Haloarchaea: What Can We Learn from Comparative Genomics? MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:308-316. [PMID: 32048095 DOI: 10.1007/s10126-020-09952-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The knowledge of antibiotics produced by Archaea (archaeocins) is still limited. So far, only two types of archaeocins are known: (i) sulfolobicins, produced by the extremely thermophilic Sulfolobus spp. and (ii) haloarcheocins, produced by halophilic archaea. Haloarcheocins were first discovered in the 1980s, but most of their characterisation was solely based on supernatant-based assays. Only a few were successfully purified and sequenced, and even fewer have a proposed biosynthetic model. Furthermore, their mode of action, ecological role and biotechnological potential are still to be explored. Haloarcheocin C8 (HalC8) is the best well-characterised haloarcheocin. We applied an approach of comparative genomics in order to go a step further in the knowledge of their biosynthetic clusters as well as the clusters encoding HalC8-like peptides. These peptides can be classified, at least, into 4 different clades, and there is low gene conservation between them. However, the putative function of some proteins is conserved. These include uncharacterized major facilitator superfamily proteins, transmembrane peptides, DNA-binding transcriptional regulators and proteins with extracellular domains. Our analysis reinforces the association of these proteins with HalC8/HalC8-like biosynthesis. Their functionality is unknown, and, in an era where it is known that haloarchaea are not confined to high salt habitats, the advance in the knowledge of their specialised metabolites will be imperative.
Collapse
Affiliation(s)
- Inês de Castro
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Sónia Mendo
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Tânia Caetano
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
11
|
Demain AL, Gómez-Ortiz B, Ruiz-Villafán B, Rodríguez-Sanoja R, Sánchez S. Recent findings of molecules with anti-infective activity: screening of non-conventional sources. Curr Opin Pharmacol 2019; 48:40-47. [DOI: 10.1016/j.coph.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
|
12
|
Chen S, Sun S, Korfanty GA, Liu J, Xiang H. A Halocin Promotes DNA Uptake in Haloferax mediterranei. Front Microbiol 2019; 10:1960. [PMID: 31620096 PMCID: PMC6759562 DOI: 10.3389/fmicb.2019.01960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/09/2019] [Indexed: 11/13/2022] Open
Abstract
Halocins are antimicrobial peptides or proteins that are produced by halophilic archaea. Although their function in inhibiting the growth of closely related haloarchaeal strains is well known, other physiological functions of halocins have also been proposed in recent years. To unveil the possible function and mechanism of halocins in DNA uptake, the halocin H4 producing strain Haloferax mediterranei DF50-ΔEPS (incapable of EPS production) was used in this study. We found that deletion of the halH4 resulted in the strain DF50-ΔEPSΔhalH4 which exhibited loss of natural DNA uptake ability. Moreover, supernatants of the halocin producing strain were capable of inducing the ability to uptake DNA. Obviously, halocin is likely responsible for inducing DNA uptake. Cell surface ultrastructures of these strains are varied from strains DF50-ΔEPS to DF50-ΔEPSΔhalH4. The cell surface of strain DF50-ΔEPS is rough due to numerous pinholes, while that of the strain DF50-ΔEPSΔhalH4 is smooth without visible pinholes. The morphology of the halH4 complemented strain, DF50-ΔEPSΔhalH4::H4, shows an intermediate phenotype between strains DF50-ΔEPS and DF50-ΔEPSΔhalH4. We speculate that halocin H4 may accelerate DNA uptake by perforating the cell surface ultrastructure. The halocin H4 may represent a novel inducer or activator of DNA uptake in Hfx. mediterranei.
Collapse
Affiliation(s)
- Shaoxing Chen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Sun
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | | | - Jingwen Liu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: an Untapped Armory for Intermicrobial Conflicts. mBio 2019; 10:mBio.00715-19. [PMID: 31064832 PMCID: PMC6509191 DOI: 10.1128/mbio.00715-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Diverse and highly variable systems involved in biological conflicts and self-versus-nonself discrimination are ubiquitous in bacteria but much less studied in archaea. We performed comprehensive comparative genomic analyses of the archaeal systems that share components with analogous bacterial systems and propose an approach to identify new systems that could be involved in these functions. We predict polymorphic toxin systems in 141 archaeal genomes and identify new, archaea-specific toxin and immunity protein families. These systems are widely represented in archaea and are predicted to play major roles in interactions between species and in intermicrobial conflicts. This work is expected to stimulate experimental research to advance the understanding of poorly characterized major aspects of archaeal biology. Numerous, diverse, highly variable defense and offense genetic systems are encoded in most bacterial genomes and are involved in various forms of conflict among competing microbes or their eukaryotic hosts. Here we focus on the offense and self-versus-nonself discrimination systems encoded by archaeal genomes that so far have remained largely uncharacterized and unannotated. Specifically, we analyze archaeal genomic loci encoding polymorphic and related toxin systems and ribosomally synthesized antimicrobial peptides. Using sensitive methods for sequence comparison and the “guilt by association” approach, we identified such systems in 141 archaeal genomes. These toxins can be classified into four major groups based on the structure of the components involved in the toxin delivery. The toxin domains are often shared between and within each system. We revisit halocin families and substantially expand the halocin C8 family, which was identified in diverse archaeal genomes and also certain bacteria. Finally, we employ features of protein sequences and genomic locus organization characteristic of archaeocins and polymorphic toxins to identify candidates for analogous but not necessarily homologous systems among uncharacterized protein families. This work confidently predicts that more than 1,600 archaeal proteins, currently annotated as “hypothetical” in public databases, are components of conflict and self-versus-nonself discrimination systems.
Collapse
|
14
|
Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and Niche of Archaea in Bioremediation. ARCHAEA (VANCOUVER, B.C.) 2018; 2018:3194108. [PMID: 30254509 PMCID: PMC6140281 DOI: 10.1155/2018/3194108] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/01/2018] [Indexed: 12/03/2022]
Abstract
Bioremediation is the use of microorganisms for the degradation or removal of contaminants. Most bioremediation research has focused on processes performed by the domain Bacteria; however, Archaea are known to play important roles in many situations. In extreme conditions, such as halophilic or acidophilic environments, Archaea are well suited for bioremediation. In other conditions, Archaea collaboratively work alongside Bacteria during biodegradation. In this review, the various roles that Archaea have in bioremediation is covered, including halophilic hydrocarbon degradation, acidophilic hydrocarbon degradation, hydrocarbon degradation in nonextreme environments such as soils and oceans, metal remediation, acid mine drainage, and dehalogenation. Research needs are addressed in these areas. Beyond bioremediation, these processes are important for wastewater treatment (particularly industrial wastewater treatment) and help in the understanding of the natural microbial ecology of several Archaea genera.
Collapse
Affiliation(s)
- Mark James Krzmarzick
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - David Kyle Taylor
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiang Fu
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Aubrey Lynn McCutchan
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|