1
|
Zhang H, Gao Z, Li C, Xu J. Two Cold-Shock Proteins Characterised as RNA Chaperone of Hyperthermophilic Archaeon Pyrococcus yayanosii. Environ Microbiol 2025; 27:e70105. [PMID: 40325874 DOI: 10.1111/1462-2920.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Cold shock proteins (Csps) play a crucial role in facilitating cellular growth at suboptimal temperatures. In this study, we identified and characterised two Csps, PyCsp and PyTRAM, in the hyperthermophilic archaeon Pyrococcus yayanosii A1. Using bio-layer interferometry (BLI) and molecular beacon assays, we demonstrated that both proteins exhibit RNA binding and unfolding activities in vitro. Heterologously expressed PyCsp and PyTRAM exhibited transcription anti-termination activity in Escherichia coli RL211 and could restore the growth of the cold-sensitive E. coli BX04 at 22°C. Knockout of the coding genes of either PyCsp or PyTRAM impaired the growth of P. yayanosii A1 at 85°C, a comparatively lower temperature to the optimal 95°C. Gene knockout and cross-complementation analyses of the coding genes for these two proteins suggest that PyCsp and PyTRAM functionally complement each other at low temperatures. PyTRAM contains the conserved TRAM domain, which is a typical characteristic of archaeal RNA chaperones. Notably, PyCsp shows low similarity to known archaeal RNA chaperones. Deletion of PYCH_0765, the gene encoding PyCsp, led to 27.5% changes in the transcriptome. This work highlights PyCsp as a non-TRAM class RNA chaperone that globally alters the transcriptome of P. yayanosii under cold shock conditions.
Collapse
Affiliation(s)
- Huanhuan Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Gao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Li C, Li S, Song Q, Da LT, Xu J. High hydrostatic pressure promotes gene transcription via a cystathionine-β-synthase domain-containing protein in the hyperthermophilic archaeon Pyrococcus yayanosii. Nucleic Acids Res 2025; 53:gkae1289. [PMID: 39777464 PMCID: PMC11705074 DOI: 10.1093/nar/gkae1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Cystathionine-β-synthase (CBS) domains are ubiquitously prevalent in all kingdoms of life. Remarkably, in archaea, proteins consisting of solely CBS domains are widespread. However, the biological functions of CBS proteins in archaea are still unknown. Here, we identified a high hydrostatic pressure regulator (HhpR) that comprises four CBS domains serving as a transcriptional activator via specifically binding to the UAS (upstream activating sequence) motif situated within the promoter region of an operon in a hyperthermophilic archaeon Pyrococcus yayanosii under high hydrostatic pressure (HHP). By combining molecular dynamics simulations, in vitro and in vivo assays, we revealed the potential binding interfaces between HhpR and its specific DNA binding site. Particularly, one stem-loop region in HhpR (termed as 'Arm') was found to play a critical role in regulating the transcription activity, and the 192 position in the Arm region is an essential site in dictating the conformational changes of HhpR at HHP condition. Our work provides novel insights into the structure-function relationship of CBS-containing proteins that participate in archaeal gene regulation as general transcriptional activators.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Siyuan Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Qinghao Song
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Lin-tai Da
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China
| |
Collapse
|
3
|
Arrowsmith TJ, Xu X, Xu S, Usher B, Stokes P, Guest M, Bronowska AK, Genevaux P, Blower TR. Inducible auto-phosphorylation regulates a widespread family of nucleotidyltransferase toxins. Nat Commun 2024; 15:7719. [PMID: 39231966 PMCID: PMC11375011 DOI: 10.1038/s41467-024-51934-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
Nucleotidyltransferases (NTases) control diverse physiological processes, including RNA modification, DNA replication and repair, and antibiotic resistance. The Mycobacterium tuberculosis NTase toxin family, MenT, modifies tRNAs to block translation. MenT toxin activity can be stringently regulated by diverse MenA antitoxins. There has been no unifying mechanism linking antitoxicity across MenT homologues. Here we demonstrate through structural, biochemical, biophysical and computational studies that despite lacking kinase motifs, antitoxin MenA1 induces auto-phosphorylation of MenT1 by repositioning the MenT1 phosphoacceptor T39 active site residue towards bound nucleotide. Finally, we expand this predictive model to explain how unrelated antitoxin MenA3 is similarly able to induce auto-phosphorylation of cognate toxin MenT3. Our study reveals a conserved mechanism for the control of tuberculosis toxins, and demonstrates how active site auto-phosphorylation can regulate the activity of widespread NTases.
Collapse
Affiliation(s)
| | - Xibing Xu
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Shangze Xu
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Ben Usher
- Department of Biosciences, Durham University, Durham, UK
| | - Peter Stokes
- Department of Chemistry, Durham University, Durham, UK
| | - Megan Guest
- Department of Biosciences, Durham University, Durham, UK
| | - Agnieszka K Bronowska
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK.
| |
Collapse
|
4
|
Skulachev VP, Vyssokikh MY, Chernyak BV, Averina OA, Andreev-Andrievskiy AA, Zinovkin RA, Lyamzaev KG, Marey MV, Egorov MV, Frolova OJ, Zorov DB, Skulachev MV, Sadovnichii VA. Mitochondrion-targeted antioxidant SkQ1 prevents rapid animal death caused by highly diverse shocks. Sci Rep 2023; 13:4326. [PMID: 36922552 PMCID: PMC10017827 DOI: 10.1038/s41598-023-31281-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
The response to stress involves the activation of pathways leading either to protection from the stress origin, eventually resulting in development of stress resistance, or activation of the rapid death of the organism. Here we hypothesize that mitochondrial reactive oxygen species (mtROS) play a key role in stress-induced programmed death of the organism, which we called "phenoptosis" in 1997. We demonstrate that the synthetic mitochondria-targeted antioxidant SkQ1 (which specifically abolishes mtROS) prevents rapid death of mice caused by four mechanistically very different shocks: (a) bacterial lipopolysaccharide (LPS) shock, (b) shock in response to intravenous mitochondrial injection, (c) cold shock, and (d) toxic shock caused by the penetrating cation C12TPP. Importantly, under all these stresses mortality was associated with a strong elevation of the levels of pro-inflammatory cytokines and administration of SkQ1 was able to switch off the cytokine storms. Since the main effect of SkQ1 is the neutralization of mtROS, this study provides evidence for the role of mtROS in the activation of innate immune responses mediating stress-induced death of the organism. We propose that SkQ1 may be used clinically to support patients in critical conditions, such as septic shock, extensive trauma, cooling, and severe infection by bacteria or viruses.
Collapse
Affiliation(s)
- V P Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - M Yu Vyssokikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991. .,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - O A Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - A A Andreev-Andrievskiy
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - R A Zinovkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - K G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - M V Marey
- Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia, 117198
| | - M V Egorov
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - O J Frolova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991.,Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - M V Skulachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - V A Sadovnichii
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
5
|
Qiu J, Zhai Y, Wei M, Zheng C, Jiao X. Toxin–antitoxin systems: Classification, biological roles, and applications. Microbiol Res 2022; 264:127159. [DOI: 10.1016/j.micres.2022.127159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
|
6
|
Chernyak BV, Lyamzaev KG, Mulkidjanian AY. Innate Immunity as an Executor of the Programmed Death of Individual Organisms for the Benefit of the Entire Population. Int J Mol Sci 2021; 22:ijms222413480. [PMID: 34948277 PMCID: PMC8704876 DOI: 10.3390/ijms222413480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.
Collapse
Affiliation(s)
- Boris V. Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- Correspondence: (B.V.C.); (A.Y.M.)
| | - Konstantin G. Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Armen Y. Mulkidjanian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Correspondence: (B.V.C.); (A.Y.M.)
| |
Collapse
|
7
|
Chen X, Hu A, Zou Q, Luo S, Wu H, Yan C, Liu T, He D, Li X, Cheng G. The Mesorhizobium huakuii transcriptional regulator AbiEi plays a critical role in nodulation and is important for bacterial stress response. BMC Microbiol 2021; 21:245. [PMID: 34511061 PMCID: PMC8436566 DOI: 10.1186/s12866-021-02304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
Background Bacterial abortive infection (Abi) systems are type IV toxin–antitoxin (TA) system, which could elicit programmed cell death and constitute a native survival strategy of pathogenic bacteria under various stress conditions. However, no rhizobial AbiE family TA system has been reported so far. Here, a M. huakuii AbiE TA system was identified and characterized. Results A mutation in M. huakuii abiEi gene, encoding an adjacent GntR-type transcriptional regulator, was generated by homologous recombination. The abiEi mutant strain grew less well in rich TY medium, and displayed increased antioxidative capacity and enhanced gentamicin resistance, indicating the abiEi operon was negatively regulated by the antitoxin AbiEi in response to the oxidative stress and a particular antibiotic. The mRNA expression of abiEi gene was significantly up-regulated during Astragalus sinicus nodule development. The abiEi mutant was severely impaired in its competitive ability in rhizosphere colonization, and was defective in nodulation with 97% reduction in nitrogen-fixing capacity. The mutant infected nodule cells contained vacuolation and a small number of abnormal bacteroids with senescence character. RNA-seq experiment revealed it had 5 up-regulated and 111 down-regulated genes relative to wild type. Of these down-regulated genes, 21 are related to symbiosis nitrogen fixation and nitrogen mechanism, 16 are involved in the electron transport chain and antioxidant responses, and 12 belong to type VI secretion system (T6SS). Conclusions M. huakuii AbiEi behaves as a key transcriptional regulator mediating root nodule symbiosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02304-0.
Collapse
Affiliation(s)
- Xiaohong Chen
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Aiqi Hu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Qian Zou
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Sha Luo
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Hetao Wu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Chunlan Yan
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Tao Liu
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Donglan He
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Xiaohua Li
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China
| | - Guojun Cheng
- Hubei Provincial Engineering and Technology Research Center for Resources and Utilization of Microbiology, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, Hubei, China.
| |
Collapse
|
8
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
9
|
Haber M, Burgsdorf I, Handley KM, Rubin-Blum M, Steindler L. Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges. Front Microbiol 2021; 11:622824. [PMID: 33537022 PMCID: PMC7848895 DOI: 10.3389/fmicb.2020.622824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 11/28/2022] Open
Abstract
Sponges are among the oldest metazoans and their success is partly due to their abundant and diverse microbial symbionts. They are one of the few animals that have Thaumarchaeota symbionts. Here we compare genomes of 11 Thaumarchaeota sponge symbionts, including three new genomes, to free-living ones. Like their free-living counterparts, sponge-associated Thaumarchaeota can oxidize ammonia, fix carbon, and produce several vitamins. Adaptions to life inside the sponge host include enrichment in transposases, toxin-antitoxin systems and restriction modifications systems, enrichments previously reported also from bacterial sponge symbionts. Most thaumarchaeal sponge symbionts lost the ability to synthesize rhamnose, which likely alters their cell surface and allows them to evade digestion by the host. All but one archaeal sponge symbiont encoded a high-affinity, branched-chain amino acid transporter system that was absent from the analyzed free-living thaumarchaeota suggesting a mixotrophic lifestyle for the sponge symbionts. Most of the other unique features found in sponge-associated Thaumarchaeota, were limited to only a few specific symbionts. These features included the presence of exopolyphosphatases and a glycine cleavage system found in the novel genomes. Thaumarchaeota have thus likely highly specific interactions with their sponge host, which is supported by the limited number of host sponge species to which each of these symbionts is restricted.
Collapse
Affiliation(s)
- Markus Haber
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czechia
| | - Ilia Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Kim M. Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research Institute, Haifa, Israel
| | - Laura Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
10
|
Li Z, Shi C, Gao S, Zhang X, Lu D, Liu G. Characteristic and role of chromosomal type II toxin-antitoxin systems locus in Enterococcus faecalis ATCC29212. J Microbiol 2020; 58:1027-1036. [PMID: 33095389 DOI: 10.1007/s12275-020-0079-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022]
Abstract
The Gram-positive bacterium Enterococcus faecalis is currently one of the major pathogens of nosocomial infections. The lifestyle of E. faecalis relies primarily on its remarkable capacity to face and survive in harsh environmental conditions. Toxin-antitoxin (TA) systems have been linked to the growth control of bacteria in response to adverse environments but have rarely been reported in Enterococcus. Three functional type II TA systems were identified among the 10 putative TA systems encoded by E. faecalis ATCC29212. These toxin genes have conserved domains homologous to MazF (DR75_1948) and ImmA/IrrE family metallo-endopeptidases (DR75_1673 and DR75_2160). Overexpression of toxin genes could inhibit the growth of Escherichia coli. However, the toxin DR75_1673 could not inhibit bacterial growth, and the bacteriostatic effect occurred only when it was coexpressed with the antitoxin DR75_1672. DR75_1948-DR75_1949 and DR75_160-DR75_2161 could maintain the stable inheritance of the unstable plasmid pLMO12102 in E. coli. Moreover, the transcription levels of these TAs showed significant differences when cultivated under normal conditions and with different temperatures, antibiotics, anaerobic agents and H2O2. When DR75_2161 was knocked out, the growth of the mutant strain at high temperature and oxidative stress was limited. The experimental characterization of these TAs loci might be helpful to investigate the key roles of type II TA systems in the physiology and environmental stress responses of Enterococcus.
Collapse
Affiliation(s)
- Zhen Li
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China.
| | - Chao Shi
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450008, P. R. China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| | - Xiulei Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| | - Di Lu
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| | - Guangzhi Liu
- Microbiome Laboratory, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, P. R. China
| |
Collapse
|
11
|
Peoples LM, Kyaw TS, Ugalde JA, Mullane KK, Chastain RA, Yayanos AA, Kusube M, Methé BA, Bartlett DH. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. BMC Genomics 2020; 21:692. [PMID: 33023469 PMCID: PMC7542103 DOI: 10.1186/s12864-020-07102-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Background The deep ocean is characterized by low temperatures, high hydrostatic pressures, and low concentrations of organic matter. While these conditions likely select for distinct genomic characteristics within prokaryotes, the attributes facilitating adaptation to the deep ocean are relatively unexplored. In this study, we compared the genomes of seven strains within the genus Colwellia, including some of the most piezophilic microbes known, to identify genomic features that enable life in the deep sea. Results Significant differences were found to exist between piezophilic and non-piezophilic strains of Colwellia. Piezophilic Colwellia have a more basic and hydrophobic proteome. The piezophilic abyssal and hadal isolates have more genes involved in replication/recombination/repair, cell wall/membrane biogenesis, and cell motility. The characteristics of respiration, pilus generation, and membrane fluidity adjustment vary between the strains, with operons for a nuo dehydrogenase and a tad pilus only present in the piezophiles. In contrast, the piezosensitive members are unique in having the capacity for dissimilatory nitrite and TMAO reduction. A number of genes exist only within deep-sea adapted species, such as those encoding d-alanine-d-alanine ligase for peptidoglycan formation, alanine dehydrogenase for NADH/NAD+ homeostasis, and a SAM methyltransferase for tRNA modification. Many of these piezophile-specific genes are in variable regions of the genome near genomic islands, transposases, and toxin-antitoxin systems. Conclusions We identified a number of adaptations that may facilitate deep-sea radiation in members of the genus Colwellia, as well as in other piezophilic bacteria. An enrichment in more basic and hydrophobic amino acids could help piezophiles stabilize and limit water intrusion into proteins as a result of high pressure. Variations in genes associated with the membrane, including those involved in unsaturated fatty acid production and respiration, indicate that membrane-based adaptations are critical for coping with high pressure. The presence of many piezophile-specific genes near genomic islands highlights that adaptation to the deep ocean may be facilitated by horizontal gene transfer through transposases or other mobile elements. Some of these genes are amenable to further study in genetically tractable piezophilic and piezotolerant deep-sea microorganisms.
Collapse
Affiliation(s)
- Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.,Flathead Lake Biological Station, University of Montana, Polson, MT, 59860, USA
| | - Than S Kyaw
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Juan A Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Kelli K Mullane
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Roger A Chastain
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - A Aristides Yayanos
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA
| | - Masataka Kusube
- Department of Material Science, National Institute of Technology, Wakayama College, 77 Noshima, Nada-cho, Gobo, Wakayama, 644-0023, Japan
| | - Barbara A Methé
- Center for Microbiome and Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
12
|
Complete genome sequence of Shewanella benthica DB21MT-2, an obligate piezophilic bacterium isolated from the deepest Mariana Trench sediment. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
13
|
Induction of a Toxin-Antitoxin Gene Cassette under High Hydrostatic Pressure Enables Markerless Gene Disruption in the Hyperthermophilic Archaeon Pyrococcus yayanosii. Appl Environ Microbiol 2019; 85:AEM.02662-18. [PMID: 30504216 DOI: 10.1128/aem.02662-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery of hyperthermophiles has dramatically changed our understanding of the habitats in which life can thrive. However, the extreme high temperatures in which these organisms live have severely restricted the development of genetic tools. The archaeon Pyrococcus yayanosii A1 is a strictly anaerobic and piezophilic hyperthermophile that is an ideal model for studies of extreme environmental adaptation. In the present study, we identified a high hydrostatic pressure (HHP)-inducible promoter (P hhp ) that controls target gene expression under HHP. We developed an HHP-inducible toxin-antitoxin cassette (HHP-TAC) containing (i) a counterselectable marker in which a gene encoding a putative toxin (virulence-associated protein C [PF0776 {VapC}]) controlled by the HHP-inducible promoter was used in conjunction with the gene encoding antitoxin PF0775 (VapB), which was fused to a constitutive promoter (P hmtB ), and (ii) a positive marker with the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase-encoding gene from P. furiosus controlled by the constitutive promoter P gdh The HHP-TAC was constructed to realize markerless gene disruption directly in P. yayanosii A1 in rich medium. The pop-out recombination step was performed using an HHP-inducible method. As proof, the PYCH_13690 gene, which encodes a 4-α-glucanotransferase, was successfully deleted from the strain P. yayanosii A1. The results showed that the capacity for starch hydrolysis in the Δ1369 mutant decreased dramatically compared to that in the wild-type strain. The inducible toxin-antitoxin system developed in this study greatly increases the genetic tools available for use in hyperthermophiles.IMPORTANCE Genetic manipulations in hyperthermophiles have been studied for over 20 years. However, the extremely high temperatures under which these organisms grow have limited the development of genetic tools. In this study, an HHP-inducible promoter was used to control the expression of a toxin. Compared to sugar-inducible and cold-shock-inducible promoters, the HHP-inducible promoter rarely has negative effects on the overall physiology and central metabolism of microorganisms, especially piezophilic hyperthermophiles. Previous studies have used auxotrophic strains as hosts, which may interfere with studies of adaptation and metabolism. Using an inducible toxin-antitoxin (TA) system as a counterselectable marker enables the generation of a markerless gene disruption strain without the use of auxotrophic mutants and counterselection with 5-fluoroorotic acid. TA systems are widely distributed in bacteria and archaea and can be used to overcome the limitations of high growth temperatures and dramatically extend the selectivity of genetic tools in hyperthermophiles.
Collapse
|