1
|
Li P, Lin Z, Li C, Luo Q, Weng S, Zeng Y, Lan Z, Wang W, Zhang Y. New insight into Clostridium butyricum-ferroferric oxide hybrid system in exogenous carbon dioxide-assisted anaerobic fermentation for acetate and butyrate production. BIORESOURCE TECHNOLOGY 2024; 414:131576. [PMID: 39374832 DOI: 10.1016/j.biortech.2024.131576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Mixotrophic cultivation, utilizing both gas and organic substances, is commonly employed to minimize the carbon loss during anaerobic fermentation of bulk chemicals. Herein, a novel Clostridium butyricum-ferroferric oxide (Fe3O4) hybrid system, enhanced by exogenous carbon dioxide (CO2), was proposed to improve carbon recovery and optimize metabolite production. The results demonstrated that exogenous CO2 improved metabolite selectivity towards acetate/butyrate, while also accelerating CO2 fixation. Compared to pure Clostridium butyricum, the hybrid system significantly increased carbon conversion to primary metabolites, boosting butyrate and acetate production by 18.7 % and 18.4 %, respectively. Enzyme activity assays revealed that Fe3O4 and exogenous CO2 acted synergistically, enhancing the activities of key enzymes involved in CO2 assimilation. Additionally, Fe3O4 facilitated intra- and extracellular electron transfer, further improving the fermentation process. This study offers new insights into the combined effects of exogenous CO2 and Fe3O4 on anaerobic fermentation, providing an efficient strategy for carbon recovery and selective acetate/butyrate production.
Collapse
Affiliation(s)
- Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zhiwen Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Chenyi Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Qingyi Luo
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Sishuo Weng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yue Zeng
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Zhenzhen Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Wei Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
2
|
Katayama YA, Kamikawa R, Yoshida T. Phylogenetic diversity of putative nickel-containing carbon monoxide dehydrogenase-encoding prokaryotes in the human gut microbiome. Microb Genom 2024; 10:001285. [PMID: 39166974 PMCID: PMC11338639 DOI: 10.1099/mgen.0.001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Although the production of carbon monoxide (CO) within the human body has been detected, only two CO-utilizing prokaryotes (CO utilizers) have been reported in the human gut. Therefore, the phylogenetic diversity of the human gut CO-utilizing prokaryotes remains unclear. Here, we unveiled more than a thousand representative genomes containing genes for putative nickel-containing CO dehydrogenase (pCODH), an essential enzyme for CO utilization. The taxonomy of genomes encoding pCODH was expanded to include 8 phyla, comprising 82 genera and 248 species. In contrast, putative molybdenum-containing CODH genes were not detected in the human gut microbial genomes. pCODH transcripts were detected in 97.3 % (n=110) of public metatranscriptome datasets derived from healthy human faeces, suggesting the ubiquitous presence of prokaryotes bearing transcriptionally active pCODH genes in the human gut. More than half of the pCODH-encoding genomes contain a set of genes for the autotrophic Wood-Ljungdahl pathway (WLP). However, 79 % of these genomes commonly lack a key gene for the WLP, which encodes the enzyme that synthesizes formate from CO2, suggesting that potential human gut CO-utilizing prokaryotes share a degenerated gene set for WLP. In the other half of the pCODH-encoding genomes, seven genes, including putative genes for flavin adenine dinucleotide-dependent NAD(P) oxidoreductase (FNOR), ABC transporter and Fe-hydrogenase, were found adjacent to the pCODH gene. None of the putative genes associated with CO-oxidizing respiratory machinery, such as energy-converting hydrogenase genes, were found in pCODH-encoding genomes. This suggests that the human gut CO utilization is not for CO removal, but potentially for fixation and/or biosynthesis, consistent with the harmless yet continuous production of CO in the human gut. Our findings reveal the diversity and distribution of prokaryotes with pCODH in the human gut microbiome, suggesting their potential contribution to microbial ecosystems in human gut environments.
Collapse
Affiliation(s)
- Yuka Adachi Katayama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Bährle R, Böhnke S, Englhard J, Bachmann J, Perner M. Current status of carbon monoxide dehydrogenases (CODH) and their potential for electrochemical applications. BIORESOUR BIOPROCESS 2023; 10:84. [PMID: 38647803 PMCID: PMC10992861 DOI: 10.1186/s40643-023-00705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/16/2023] [Indexed: 04/25/2024] Open
Abstract
Anthropogenic carbon dioxide (CO2) levels are rising to alarming concentrations in earth's atmosphere, causing adverse effects and global climate changes. In the last century, innovative research on CO2 reduction using chemical, photochemical, electrochemical and enzymatic approaches has been addressed. In particular, natural CO2 conversion serves as a model for many processes and extensive studies on microbes and enzymes regarding redox reactions involving CO2 have already been conducted. In this review we focus on the enzymatic conversion of CO2 to carbon monoxide (CO) as the chemical conversion downstream of CO production render CO particularly attractive as a key intermediate. We briefly discuss the different currently known natural autotrophic CO2 fixation pathways, focusing on the reversible reaction of CO2, two electrons and protons to CO and water, catalyzed by carbon monoxide dehydrogenases (CODHs). We then move on to classify the different type of CODHs, involved catalyzed chemical reactions and coupled metabolisms. Finally, we discuss applications of CODH enzymes in photochemical and electrochemical cells to harness CO2 from the environment transforming it into commodity chemicals.
Collapse
Affiliation(s)
- Rebecca Bährle
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Stefanie Böhnke
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany
| | - Jonas Englhard
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Julien Bachmann
- Chemistry of Thin Film Materials, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Mirjam Perner
- Department of Marine Geomicrobiology, Faculty of Marine Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148, Kiel, Germany.
| |
Collapse
|
4
|
Nishida S, Omae K, Inoue M, Sako Y, Kamikawa R, Yoshida T. Construction of multiple metagenome assembled genomes containing carbon monoxide dehydrogenases from anaerobic carbon monoxide enrichment cultures. Arch Microbiol 2023; 205:292. [PMID: 37470847 DOI: 10.1007/s00203-023-03635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Despite its toxicity to many organisms, including most prokaryotes, carbon monoxide (CO) is utilized by some aerobic and anaerobic prokaryotes. Hydrogenogenic CO utilizers employ carbon monoxide dehydrogenase (CODH) and energy-converting hydrogenase (ECH) to oxidize CO and reduce protons to produce H2. Those prokaryotes constitute a rare biosphere and are difficult to detect even with PCR amplification and with metagenomic analyses. In this study, anaerobic CO-enrichment cultures followed by construction of metagenome assembled genomes (MAGs) detected high-quality MAGs from potential hydrogenogenic CO utilizers. Of 32 MAGs constructed, 5 were potential CO utilizer harboring CODH genes. Of the five MAGs, two were classified into the genus Thermolithobacter on the basis of 16S rRNA sequence identity, related to Carboxydocella tharmautotrophica 41, with an average nucleotide identity (ANI) of approximately 72%. Additionally, two were related to Geoglobus acetivorans with ANI values ranging from 75 to 77% to G. acetivorans SBH6, and one MAG was identified as Desulfotomaculum kuznetsovii with an ANI > 96% to D. kuznetsovii DSM 6115. The two Thermolithobacter MAGs identified in this study contained CODH-ECH gene clusters, and were therefore identified as potential hydrogenogenic CO utilizers. However, these MAGs harbored three CODH gene clusters that showed distinct physiological functions in addition to CODH-ECH gene clusters. In total, the five potential CO utilizer MAGs contained sixteen CODH genes. Among those CODHs, four sets did not cluster with any known CODH protein sequences (with an identity of > 90%), and the CODH database was expanded.
Collapse
Affiliation(s)
- Shiho Nishida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
| | - Masao Inoue
- R-GIRO, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
- College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ryoma Kamikawa
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
5
|
Imaura Y, Okamoto S, Hino T, Ogami Y, Katayama YA, Tanimura A, Inoue M, Kamikawa R, Yoshida T, Sako Y. Isolation, Genomic Sequence and Physiological Characterization of Parageobacillus sp. G301, an Isolate Capable of Both Hydrogenogenic and Aerobic Carbon Monoxide Oxidation. Appl Environ Microbiol 2023; 89:e0018523. [PMID: 37219438 PMCID: PMC10304674 DOI: 10.1128/aem.00185-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/06/2023] [Indexed: 05/24/2023] Open
Abstract
Prokaryotes that can oxidize carbon monoxide (CO oxidizers) can use this gas as a source of carbon or energy. They oxidize carbon monoxide with carbon monoxide dehydrogenases (CODHs): these are divided into nickel-containing CODH (Ni-CODH), which are sensitive to O2, and molybdenum-containing CODH (Mo-CODH), which can function aerobically. The oxygen conditions required for CO oxidizers to oxidize CO may be limited, as those which have been isolated and characterized so far contain either Ni- or Mo-CODH. Here, we report a novel CO oxidizer, Parageobacillus sp. G301, which is capable of CO oxidation using both types of CODH based on genomic and physiological characterization. This thermophilic, facultatively anaerobic Bacillota bacterium was isolated from the sediments of a freshwater lake. Genomic analyses revealed that strain G301 possessed both Ni-CODH and Mo-CODH. Genome-based reconstruction of its respiratory machinery and physiological investigations indicated that CO oxidation by Ni-CODH was coupled with H2 production (proton reduction), whereas CO oxidation by Mo-CODH was coupled with O2 reduction under aerobic conditions and nitrate reduction under anaerobic conditions. G301 would thus be able to thrive via CO oxidation under a wide range of conditions, from aerobic environments to anaerobic environments, even with no terminal electron acceptors other than protons. Comparative genome analyses revealed no significant differences in genome structures and encoded cellular functions, except for CO oxidation between CO oxidizers and non-CO oxidizers in the genus Parageobacillus; CO oxidation genes are retained exclusively for CO metabolism and related respiration. IMPORTANCE Microbial CO oxidation has received much attention because it contributes to global carbon cycling in addition to functioning as a remover of CO, which is toxic to many organisms. Some microbial CO oxidizers, including both bacteria and archaea, exhibit sister relationships with non-CO oxidizers even in genus-level monophyletic groups. In this study, we demonstrated that a new isolate, Parageobacillus sp. G301, is capable of both anaerobic (hydrogenogenic) and aerobic CO oxidation, which has not been previously reported. The discovery of this new isolate, which is versatile in CO metabolism, will accelerate research on CO oxidizers with diverse CO metabolisms, expanding our understanding of microbial diversity. Through comparative genomic analyses, we propose that CO oxidation genes are not essential genetic elements in the genus Parageobacillus, providing insights into the factors which shape the punctate distribution of CO oxidizers in the prokaryote tree, even in genus-level monophyletic groups.
Collapse
Affiliation(s)
| | | | - Taiki Hino
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yusuke Ogami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Ayumi Tanimura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- R-GIRO, Ritsumeikan University, Kusatsu, Shiga, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Richardson L, Allen B, Baldi G, Beracochea M, Bileschi M, Burdett T, Burgin J, Caballero-Pérez J, Cochrane G, Colwell L, Curtis T, Escobar-Zepeda A, Gurbich T, Kale V, Korobeynikov A, Raj S, Rogers A, Sakharova E, Sanchez S, Wilkinson D, Finn R. MGnify: the microbiome sequence data analysis resource in 2023. Nucleic Acids Res 2022; 51:D753-D759. [PMID: 36477304 PMCID: PMC9825492 DOI: 10.1093/nar/gkac1080] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
The MGnify platform (https://www.ebi.ac.uk/metagenomics) facilitates the assembly, analysis and archiving of microbiome-derived nucleic acid sequences. The platform provides access to taxonomic assignments and functional annotations for nearly half a million analyses covering metabarcoding, metatranscriptomic, and metagenomic datasets, which are derived from a wide range of different environments. Over the past 3 years, MGnify has not only grown in terms of the number of datasets contained but also increased the breadth of analyses provided, such as the analysis of long-read sequences. The MGnify protein database now exceeds 2.4 billion non-redundant sequences predicted from metagenomic assemblies. This collection is now organised into a relational database making it possible to understand the genomic context of the protein through navigation back to the source assembly and sample metadata, marking a major improvement. To extend beyond the functional annotations already provided in MGnify, we have applied deep learning-based annotation methods. The technology underlying MGnify's Application Programming Interface (API) and website has been upgraded, and we have enabled the ability to perform downstream analysis of the MGnify data through the introduction of a coupled Jupyter Lab environment.
Collapse
Affiliation(s)
- Lorna Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ben Allen
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Germana Baldi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Martin Beracochea
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Tony Burdett
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Josephine Burgin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Juan Caballero-Pérez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Guy Cochrane
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Lucy J Colwell
- Google Research, Brain Team, Mountain View, CA, USA,Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Tom Curtis
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Alejandra Escobar-Zepeda
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tatiana A Gurbich
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Varsha Kale
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Anton Korobeynikov
- Center for Algorithmic Biotechnology, St Petersburg State University, St Petersburg, Russia
| | - Shriya Raj
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alexander B Rogers
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ekaterina Sakharova
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Santiago Sanchez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - Robert D Finn
- To whom correspondence should be addressed. Tel: +44 1223 492679;
| |
Collapse
|