1
|
Xie B, Li W, Yang T, Zhang Y, Xiao W, Hu S, Wu Y, Sun X, Wang B, Sun R. Response of bacterial community structure in saline soils to the application of kitchen waste-derived fermented organic fertilizer. World J Microbiol Biotechnol 2025; 41:162. [PMID: 40316880 DOI: 10.1007/s11274-025-04386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/26/2025] [Indexed: 05/04/2025]
Abstract
Saline soils, which inhibit plant growth and diminish soil functions such as carbon storage, present a significant challenge to agricultural productivity. Consequently, soil improvement is crucial for achieving sustainable agricultural development. Organic fertilizers, particularly those derived from kitchen waste, have shown potential in enhancing soil fertility and structure. However, the interaction between kitchen waste - derived fermented organic fertilizers and their impact on microbial diversity, community structure, and nutrient dynamics in saline soils remains an underexplored area within environmental research. In this study, microcosm experiments were conducted with saline soil samples. We examined the temporal changes in soil nutrient levels and microbial diversity after the application of inorganic and organic fertilizer for a 15-day period. The results demonstrated that short-term application of kitchen waste fermented organic fertilizer significantly increased the levels of organic matter (OM), total nitrogen (TN), hydrolyzed nitrogen (HN), total phosphorus (TP), available phosphorus (AP), and available potassium (AK); however, it also led to a reduction in microbial diversity within saline soils while simultaneously promoting the presence of beneficial microorganisms such as Photobacterium, Pseudoalteromonas, and Planococcus. The relative abundance of Bacillus increased from 0.34 to 35.22% in the COS (treatment with 30% organic fertilizer) treatment. The redundancy analysis demonstrated that, except for TK (total potassium), the physicochemical properties of the saline soils were positively correlated with the dominant bacterial community abundance under the BOS (treatment with 10% organic fertilizer) and COS treatments but negatively correlated with the salt-tolerant bacterial abundance under the CK (treatment with saline soil) and AIS (treatment with saline soil and inorganic fertilizer) treatments. In conclusion, the application of kitchen waste fermented organic fertilizer is a beneficial strategy for enhancing saline soil fertility, promoting the proliferation of beneficial microorganisms, and rehabilitating saline soils.
Collapse
Affiliation(s)
- Bin Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Wenzhuo Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Yajun Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Weidong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Xiaofeng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
| | - Bin Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China
- China Petroleum Engineering & Construction Corp. North China Company, Renqiu, 062550, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, China.
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China.
| |
Collapse
|
2
|
Abdelfadil MR, Patz S, Kolb S, Ruppel S. Unveiling the influence of salinity on bacterial microbiome assembly of halophytes and crops. ENVIRONMENTAL MICROBIOME 2024; 19:49. [PMID: 39026296 PMCID: PMC11256479 DOI: 10.1186/s40793-024-00592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Climate change and anthropogenic activities intensify salinity stress impacting significantly on plant productivity and biodiversity in agroecosystems. There are naturally salt-tolerant plants (halophytes) that can grow and withstand such harsh conditions. Halophytes have evolved along with their associated microbiota to adapt to hypersaline environments. Identifying shared microbial taxa between halophyte species has rarely been investigated. We performed a comprehensive meta-analysis using the published bacterial 16S rRNA gene sequence datasets to untangle the rhizosphere microbiota structure of two halophyte groups and non-halophytes. We aimed for the identification of marker taxa of plants being adapted to a high salinity using three independent approaches. RESULTS Fifteen studies met the selection criteria for downstream analysis, consisting of 40 plants representing diverse halophyte and non-halophyte species. Microbiome structural analysis revealed distinct compositions for halophytes that face high salt concentrations in their rhizosphere compared to halophytes grown at low salt concentrations or from non-halophytes. For halophytes grown at high salt concentrations, we discovered three bacterial genera that were independently detected through the analysis of the core microbiome, key hub taxa by network analysis and random forest analysis. These genera were Thalassospira, Erythrobacter, and Marinobacter. CONCLUSIONS Our meta-analysis revealed that salinity level is a critical factor in affecting the rhizosphere microbiome assembly of plants. Detecting marker taxa across high-halophytes may help to select Bacteria that might improve the salt tolerance of non-halophytic plants.
Collapse
Affiliation(s)
- Mohamed R Abdelfadil
- Thaer-Institute, Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany.
- Department of Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979, Großbeeren, Germany.
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374, Müncheberg, Germany.
| | - Sascha Patz
- Computomics GmbH, Eisenbahnstraße 1, 72072, Tübingen, Baden-Württemberg, Germany
| | - Steffen Kolb
- Thaer-Institute, Faculty of Life Sciences, Humboldt University of Berlin, 10115, Berlin, Germany
- Microbial Biogeochemistry, RA Landscape Functioning, Leibniz Center for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374, Müncheberg, Germany
| | - Silke Ruppel
- Department of Plant-Microbe Systems, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), 14979, Großbeeren, Germany
| |
Collapse
|
3
|
Mousa WK, Abu-Izneid T, Salah-Tantawy A. High-throughput sequencing reveals the structure and metabolic resilience of desert microbiome confronting climate change. FRONTIERS IN PLANT SCIENCE 2024; 15:1294173. [PMID: 38510442 PMCID: PMC10953687 DOI: 10.3389/fpls.2024.1294173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024]
Abstract
Introduction Desert ecosystems harbor a unique microbial diversity that is crucial for ecological stability and biogeochemical cycles. An in-depth understanding of the biodiversity, compositions, and functions of these microbial communities is imperative to navigate global changes and confront potential threats and opportunities applicable to agricultural ecosystems amid climate change. Methods This study explores microbial communities in the rhizosphere and endosphere of desert plants native to the Arabian Peninsula using next-generation sequencing of the 16S rRNA gene (V3-V4 hypervariable region). Results Our results reveal that each microbial community has a diverse and unique microbial composition. Based on alpha and beta diversity indices, the rhizosphere microbiome is significantly diverse and richer in microbial taxa compared to the endosphere. The data reveals a shift towards fast-growing microbes with active metabolism, involvement in nutrient cycling, nitrogen fixation, and defense pathways. Our data reveals the presence of habitat-specific microbial communities in the desert, highlighting their remarkable resilience and adaptability to extreme environmental conditions. Notably, we observed the existence of radiation-resistant microbes such as Deinococcus radiotolerans, Kocuria sp., and Rubrobacter radiotolerans which can tolerate high levels of ionizing radiation. Additionally, examples of microbes exhibiting tolerance to challenging conditions include Nocardioides halotolerans, thriving in high-salinity environments, and hyperthermophilic microbes such as Quasibacillus thermotolerans. Moreover, functional analysis reveals enrichment in chaperon biosynthesis pathways associated with correct protein folding under heat stress conditions. Discussion Our research sheds light on the unique diversity of desert microbes and underscores their potential applications to increase the resilience of agriculture ecosystems, offering a promising strategy to fortify crops against the challenges posed by climate change, ultimately supporting sustainable food production for our ever-expanding global population.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- Al Ain University (AAU) Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Tareq Abu-Izneid
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- Al Ain University (AAU) Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ahmed Salah-Tantawy
- Institute of Analytical and Environmental Sciences, College of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan
- Department of Zoology, Marine Science Division, College of Science, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
4
|
Baeshen NN, Baz L, Shami AY, Ashy RA, Jalal RS, Abulfaraj AA, Refai M, Majeed MA, Abuzahrah SS, Abdelkader H, Baeshen NA, Baeshen MN. Composition, Abundance, and Diversity of the Soil Microbiome Associated with the Halophytic Plants Tamarix aphylla and Halopeplis perfoliata on Jeddah Seacoast, Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112176. [PMID: 37299153 DOI: 10.3390/plants12112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The coast of the Red Sea in Jeddah City is home to a unique microbial community that has adapted to extreme environmental conditions. Therefore, it is essential to characterize the microbial community in this unique microbiome to predict how environmental changes will affect it. The aim of this study was to conduct metagenomic sequencing of 16S rRNA and ITS rRNA genes for the taxonomic classification of the microbial community in soil samples associated with the halophytic plants Tamarix aphylla and Halopeplis perfoliata. Fifteen soil samples were collected in triplicate to enhance robustness and minimize sampling bias. Firstly, to identify novel microbial candidates, the gDNAs were isolated from the saline soil samples surrounding each plant, and then bacterial 16S (V3-V4) and fungal ITS1 regions were sequenced utilizing a high-throughput approach (next-generation sequencing; NGS) on an Illumina MiSeq platform. Quality assessment of the constructed amplicon libraries was conducted using Agilent Bioanalyzer and fluorometric quantification methods. The raw data were processed and analyzed using the Pipeline (Nova Lifetech, Singapore) for bioinformatics analysis. Based on the total number of readings, it was determined that the phylum Actinobacteriota was the most prevalent in the soil samples examined, followed by the phylum Proteobacteria. Based on ITS rRNA gene analysis, the alpha and beta fungal diversity in the studied soil samples revealed that the fungal population is structured into various groups according to the crust (c) and/or rhizosphere (r) plant parts. Fungal communities in the soil samples indicated that Ascomycota and Basidiomycota were the two most abundant phyla based on the total amount of sequence reads. Secondly, heat-map analysis of the diversity indices showed that the bacterial alpha diversity, as measured by Shannon, Simpson, and InvSimpson, was associated with soil crust (Hc and Tc enclosing H. perfoliata and T. aphylla, respectively) and that the soil rhizosphere (Hr and Tr) was strongly correlated with bacterial beta diversity. Finally, fungal-associated Tc and Hc samples clustered together, according to observations made using the Fisher and Chao1 methods, and Hr and Tr samples clustered together according to Shannon, Simpson, and InvSimpson analyses. As a result of the soil investigation, potential agents that have been identified could lead to innovative agricultural, medical, and industrial applications.
Collapse
Affiliation(s)
- Naseebh N Baeshen
- Department of Biology, College of Sciences and Arts at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Lina Baz
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashwag Y Shami
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11617, Saudi Arabia
| | - Ruba A Ashy
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Rewaa S Jalal
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed Refai
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Mazen A Majeed
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Samah S Abuzahrah
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Hayam Abdelkader
- Virus Research Department, Molecular Biology Laboratory, PPRI, ARC, Giza 12613, Egypt
| | - Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| |
Collapse
|