1
|
Nakakura T, Tanaka H, Suzuki T. Caveolae-mediated endocytosis pathway regulates endothelial fenestra homeostasis in the rat pituitary. Biochem Biophys Res Commun 2023; 675:177-183. [PMID: 37506534 DOI: 10.1016/j.bbrc.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Endothelial fenestrae are transcellular pores separated by diaphragms formed by plasmalemma vesicle-associated proteins (PLVAP) and function as channels for peptide hormones and other substances. Caveola, a key regulator of clathrin-independent endocytosis, may be involved in the invagination and fusion of plasma membranes, which are essential for fenestra formation. In this study, we first found that caveolin-1 and -2, the major components of caveolae, was localized in fenestrated endothelial cells in the anterior lobe of the rat pituitary by immunohistochemistry. As we also observed caveolae in the endothelial cells of the anterior lobe of the rat pituitary by transmission electron microscopy, we studied the relationship between the caveolae-mediated endocytosis pathway and fenestrae structure in cultured endothelial cells isolated from the anterior lobe of the rat pituitary (CECAL) by immunofluorescence staining and scanning electron microscopy. The inhibition of caveolae-mediated endocytosis by genistein enlarged the PLVAP-positive oval-shaped structure that represented the sieve plate and induced the formation of a doughnut-shaped bulge around the fenestra in CECAL. In contrast, the acceleration of caveolae-mediated endocytosis by okadaic acid induced the diffusion of PLVAP-positive signals in the cytoplasm and reduced the number of fenestrae in CECAL. These results indicate that the caveolae-mediated endocytosis pathway is involved in the fenestra homeostasis in the fenestrated endothelial cells of the rat pituitary.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Hideyuki Tanaka
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, 060-8556, Japan
| |
Collapse
|
2
|
Carmona B, Marinho HS, Matos CL, Nolasco S, Soares H. Tubulin Post-Translational Modifications: The Elusive Roles of Acetylation. BIOLOGY 2023; 12:biology12040561. [PMID: 37106761 PMCID: PMC10136095 DOI: 10.3390/biology12040561] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Microtubules (MTs), dynamic polymers of α/β-tubulin heterodimers found in all eukaryotes, are involved in cytoplasm spatial organization, intracellular transport, cell polarity, migration and division, and in cilia biology. MTs functional diversity depends on the differential expression of distinct tubulin isotypes and is amplified by a vast number of different post-translational modifications (PTMs). The addition/removal of PTMs to α- or β-tubulins is catalyzed by specific enzymes and allows combinatory patterns largely enriching the distinct biochemical and biophysical properties of MTs, creating a code read by distinct proteins, including microtubule-associated proteins (MAPs), which allow cellular responses. This review is focused on tubulin-acetylation, whose cellular roles continue to generate debate. We travel through the experimental data pointing to α-tubulin Lys40 acetylation role as being a MT stabilizer and a typical PTM of long lived MTs, to the most recent data, suggesting that Lys40 acetylation enhances MT flexibility and alters the mechanical properties of MTs, preventing MTs from mechanical aging characterized by structural damage. Additionally, we discuss the regulation of tubulin acetyltransferases/desacetylases and their impacts on cell physiology. Finally, we analyze how changes in MT acetylation levels have been found to be a general response to stress and how they are associated with several human pathologies.
Collapse
Affiliation(s)
- Bruno Carmona
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Catarina Lopes Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Av. D. João II, Lote 4.69.01, 1990-096 Lisboa, Portugal
| |
Collapse
|
3
|
Regulation of fenestra formation via actin-dynamin2 interaction in rat pituitary endothelial cells. Cell Tissue Res 2022; 390:441-451. [PMID: 36102975 DOI: 10.1007/s00441-022-03685-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022]
Abstract
Endothelial fenestrae are transcellular pores divided by a diaphragm consisting of plasmalemma vesicle-associated protein (PLVAP). They function as a channel for peptide hormones and other substances. Invagination of the plasma membrane is necessary for the fenestra formation. The actin cytoskeleton is essential for scission of endocytic vesicles from the invaginated plasma membrane. Therefore, we examined the involvement of the actin cytoskeleton in fenestra formation in cultured endothelial cells isolated from the anterior lobe (AL) of the rat pituitary, using immunofluorescence and scanning electron microscopy. Inhibition of polymerization and depolymerization of the actin cytoskeleton by latrunculin A and jasplakinolide, respectively, remarkably increased the PLVAP-positive sieve plate area and number of fenestrae. Jasplakinolide significantly affected the arrangement of the fenestra on the cell surface, resulting in parallel serpentine furrows of the fenestra. These results suggest that the actin cytoskeleton not only induces fenestra formation but also regulates cell arrangement. Dynamin is a scission protein of the invaginated plasma membrane and interacts with the actin cytoskeleton. We found that dynamin2 is mainly expressed in the endothelial cells of the rat AL. We then investigated the function of dynamin2 by the treatment with dyngo-4a, a potent inhibitor of dynamin1 and dynamin2, on the fenestra formation. As a result, the PLVAP-positive area is significantly increased by the treatment. These results show that the actin-dynamin2 interaction is essential for the control of the fenestra formation in endothelial cells of rat AL. In conclusion, the actin cytoskeleton and dynamin2 function as regulators of endothelial fenestra formation.
Collapse
|
4
|
Łysyganicz PK, Pooranachandran N, Liu X, Adamson KI, Zielonka K, Elworthy S, van Eeden FJ, Grierson AJ, Malicki JJ. Loss of Deacetylation Enzymes Hdac6 and Sirt2 Promotes Acetylation of Cytoplasmic Tubulin, but Suppresses Axonemal Acetylation in Zebrafish Cilia. Front Cell Dev Biol 2021; 9:676214. [PMID: 34268305 PMCID: PMC8276265 DOI: 10.3389/fcell.2021.676214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/13/2021] [Indexed: 01/26/2023] Open
Abstract
Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.
Collapse
Affiliation(s)
- Paweł K Łysyganicz
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | | | - Xinming Liu
- The School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Kathryn I Adamson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katarzyna Zielonka
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Stone Elworthy
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Fredericus J van Eeden
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Grierson
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Jarema J Malicki
- The Bateson Centre, The University of Sheffield, Sheffield, United Kingdom.,Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Hsu NY, Pathak N, Chen YT, Hsu YC, Yang JM. Pharmacophore anchor models of ATAT1 to discover potential inhibitors and lead optimization. Comput Biol Chem 2021; 93:107513. [PMID: 34052673 DOI: 10.1016/j.compbiolchem.2021.107513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Post-translation modification of microtubules is associated with many diseases like cancer. Alpha Tubulin Acetyltransferase 1 (ATAT1) is a major enzyme that acetylates 'Lys-40' in alpha-tubulin on the luminal side of microtubules and is a drug target that lacks inhibitors. Here, we developed pharmacophore anchor models of ATAT1 which were constructed statistically using thousands of docked compounds, for drug design and investigating binding mechanisms. Our models infer the compound moiety preferences with the physico-chemical properties for the ATAT1 binding site. The results from the pharmacophore anchor models show the three main sub-pockets, including S1 acetyl site, S2 adenine site, and S3 diphosphate site with anchors, where conserved moieties interact with respective sub-pocket residues in each site and help in guiding inhibitor discovery. We validated these key anchors by analyzing 162 homologous protein sequences (>99 species) and over 10 structures with various bound ligands and mutations. Our results were consistent with previous works also providing new interesting insights. Our models applied in virtual screening predicted several ATAT1 potential inhibitors. We believe that our model is useful for future inhibitor discovery and for guiding lead optimization.
Collapse
Affiliation(s)
- Nung-Yu Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Nikhil Pathak
- TIGP-Bioinformatics, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yen-Chao Hsu
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30050, Taiwan; Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, 30050, Taiwan.
| |
Collapse
|
6
|
Nakakura T, Suzuki T, Tanaka H, Arisawa K, Miyashita T, Nekooki-Machida Y, Kurosawa T, Tega Y, Deguchi Y, Hagiwara H. Fibronectin is essential for formation of fenestrae in endothelial cells of the fenestrated capillary. Cell Tissue Res 2021; 383:823-833. [PMID: 32910242 DOI: 10.1007/s00441-020-03273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022]
Abstract
Endothelial fenestrae are transcellular pores that pierce the capillary walls in endocrine glands such as the pituitary. The fenestrae are covered with a thin fibrous diaphragm consisting of the plasmalemma vesicle-associated protein (PLVAP) that clusters to form sieve plates. The basal surface of the vascular wall is lined by basement membrane (BM) composed of various extracellular matrices (ECMs). However, the relationship between the ECMs and the endothelial fenestrae is still unknown. In this study, we isolated fenestrated endothelial cells from the anterior lobe of the rat pituitary, using a dynabeads-labeled antibody against platelet endothelial cell adhesion molecule 1 (PECAM1). We then analyzed the gene expression levels of several endothelial marker genes and genes for integrin α subunits, which function as the receptors for ECMs, by real-time polymerase chain reaction (PCR). The results showed that the genes for the integrin α subunit, which binds to collagen IV, fibronectin, laminin-411, or laminin-511, were highly expressed. When the PECAM1-positive cells were cultured for 7 days on collagen IV-, fibronectin-, laminins-411-, or laminins-511-coated coverslips, the sieve plate structures equipped with probably functional fenestrae were maintained only when the cells were cultured on fibronectin. Additionally, real-time PCR analysis showed that the fibronectin coating was effective in maintaining the expression pattern of several endothelial marker genes that were preferentially expressed in the endothelial cells of the fenestrated capillaries. These results indicate that fibronectin functions as the principal factor in the maintenance of the sieve plate structures in the endothelial cells of the fenestrated capillary.
Collapse
Affiliation(s)
- Takashi Nakakura
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan.
| | - Takeshi Suzuki
- Department of Biology, Sapporo Medical University, Sapporo, Japan
| | - Hideyuki Tanaka
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Kenjiro Arisawa
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Toshio Miyashita
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| | - Toshiki Kurosawa
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yuma Tega
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Yoshiharu Deguchi
- Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-Ku, Tokyo, 173-8605, Japan
| |
Collapse
|
7
|
Yanai R, Yamashita Y, Umezu K, Hiradate Y, Hara K, Tanemura K. Expression and localization of alpha-tubulin N-acetyltransferase 1 in the reproductive system of male mice. J Reprod Dev 2020; 67:59-66. [PMID: 33390366 PMCID: PMC7902212 DOI: 10.1262/jrd.2020-110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The structure of microtubules is essential for the fertilizing ability of spermatozoa. Acetylation of α-tubulin plays an important role in flagellar elongation
and spermatozoa motility. Previous reports have suggested that alpha-tubulin N-acetyltransferase 1 (ATAT1) is the main acetyltransferase involved in the
acetylation of α-tubulin. Although ATAT1 is reported to express in the testis, no information is available regarding its expression in elongated spermatids,
epididymis, and mature spermatozoa. Hence, it remains unclear whether ATAT1 is involved in spermatozoa maturation and capacitation. Therefore, we evaluated the
expression of ATAT1 in the mouse male reproductive system using immunostaining and western blotting. Our results showed that ATAT1 was expressed in spermatids
during spermiogenesis in mouse testes, but its expression varied according to the seminiferous tubule stage. We observed ATAT1 in the cytoplasm of round
spermatids, the flagella of elongated spermatids, and in the cytoplasm of step 16 spermatids, just before its release into the lumen. In addition, ATAT1 was
expressed in epithelial cells of the epididymis. In spermatozoa of the cauda epididymis, ATAT1 expression was primarily observed in the midpiece of the
spermatozoa. The localization of ATAT1 protein in the male germline was observed during spermiogenesis as well as during spermatozoa maturation. Our results
suggest that ATAT1 may be involved in the formation of flagella and in the acetylation process, which has attracted attention in recent years regarding male
infertility.
Collapse
Affiliation(s)
- Rin Yanai
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Yudai Yamashita
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Kohei Umezu
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Yuuki Hiradate
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Kenshiro Hara
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| | - Kentaro Tanemura
- Laboratory of Animal Reproduction and Development, Graduate School of Agricultural Science, Tohoku University, Miyagi 980-8572, Japan
| |
Collapse
|
8
|
Nemoto T, Nakakura T, Kakinuma Y. Elevated blood pressure in high-fat diet-exposed low birthweight rat offspring is most likely caused by elevated glucocorticoid levels due to abnormal pituitary negative feedback. PLoS One 2020; 15:e0238223. [PMID: 32853260 PMCID: PMC7451543 DOI: 10.1371/journal.pone.0238223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
Abstract
Being delivered as a low birthweight (LBW) infant is a risk factor for elevated blood pressure and future problems with cardiovascular and cerebellar diseases. Although premature babies are reported to have low numbers of nephrons, some unclear questions remain about the mechanisms underlying elevated blood pressure in full-term LBW infants. We previously reported that glucocorticoids increased miR-449a expression, and increased miR-449a expression suppressed Crhr1 expression and caused negative glucocorticoid feedback. Therefore, we conducted this study to clarify the involvement of pituitary miR-449a in the increase in blood pressure caused by higher glucocorticoids in LBW rats. We generated a fetal low-carbohydrate and calorie-restricted model rat (60% of standard chow), and some individuals showed postnatal growth failure caused by growth hormone receptor expression. Using this model, we examined how a high-fat diet (lard-based 45kcal% fat)-induced mismatch between prenatal and postnatal environments could elevate blood pressure after growth. Although LBW rats fed standard chow had slightly higher blood pressure than control rats, their blood pressure was significantly higher than controls when exposed to a high-fat diet. Observation of glomeruli subjected to periodic acid methenamine silver (PAM) staining showed no difference in number or size. Aortic and cardiac angiotensin II receptor expression was altered with compensatory responses. Blood aldosterone levels were not different between control and LBW rats, but blood corticosterone levels were significantly higher in the latter with high-fat diet exposure. Administration of metyrapone, a steroid synthesis inhibitor, reduced blood pressure to levels comparable to controls. We showed that high-fat diet exposure causes impairment of the pituitary glucocorticoid negative feedback via miR-449a. These results clarify that LBW rats have increased blood pressure due to high glucocorticoid levels when they are exposed to a high-fat diet. These findings suggest a new therapeutic target for hypertension of LBW individuals.
Collapse
Affiliation(s)
- Takahiro Nemoto
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo, Japan
- * E-mail:
| | - Takashi Nakakura
- Department of Anatomy, Graduate School of Medicine, Teikyo University, Tokyo, Japan
| | - Yoshihiko Kakinuma
- Department of Bioregulatory Science (Physiology), Nippon Medical School, Tokyo, Japan
| |
Collapse
|
9
|
Nekooki-Machida Y, Hagiwara H. Role of tubulin acetylation in cellular functions and diseases. Med Mol Morphol 2020; 53:191-197. [PMID: 32632910 DOI: 10.1007/s00795-020-00260-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/01/2020] [Indexed: 12/19/2022]
Abstract
Acetylation is a well-studied post-translational modification (PTM) of tubulin. Acetylated tubulin is present in the centrioles, primary cilia, and flagella, which contain long-lived stable microtubules. Tubulin acetylation plays an important role in cellular activities including cell polarity, cell migration, vesicle transport, and cell development. Cryo-electron microscopy reconstructions have revealed conformational changes in acetylated tubulin, revealing a reduction in intermonomer interactions among tubulins and an increase in microtubule elasticity. The kinetics of conformational changes in acetylated tubulin may elucidate microtubule functions in these cellular activities. Abnormal tubulin acetylation has been implicated in neurodegenerative disorders, ciliopathies, and cancers. Thus, it is important to elucidate the mechanisms underlying tubulin acetylation and its effects on cellular activity to understand these diseases and to design potential therapeutic strategies. This review discusses the cellular distribution and dynamics of acetylated tubulin and its role in regulating cellular activities.
Collapse
Affiliation(s)
- Yoko Nekooki-Machida
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Haruo Hagiwara
- Department of Anatomy and Cell Biology, Teikyo University School of Medicine, 2-11-1 Kaga Itabashi-ku, Tokyo, 173-8605, Japan.
| |
Collapse
|
10
|
Wu F, Mao D, Liu Y, Chen X, Xu H, Li TC, Wang CC. Localization of Mucin 1 in endometrial luminal epithelium and its expression in women with reproductive failure during implantation window. J Mol Histol 2019; 50:563-572. [DOI: 10.1007/s10735-019-09848-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022]
|
11
|
Sullivan R, Légaré C, Lamontagne‐Proulx J, Breton S, Soulet D. Revisiting structure/functions of the human epididymis. Andrology 2019; 7:748-757. [DOI: 10.1111/andr.12633] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/07/2019] [Accepted: 03/29/2019] [Indexed: 01/20/2023]
Affiliation(s)
- R. Sullivan
- Department Obstetrics, Gynecology and Reproduction Faculty Medicine Université Laval Quebec QC Canada
- Reproduction, Mother and Youth Health Division Centre de recherche du CHU de Québec‐Université Laval Quebec QC Canada
| | - C. Légaré
- Department Obstetrics, Gynecology and Reproduction Faculty Medicine Université Laval Quebec QC Canada
- Reproduction, Mother and Youth Health Division Centre de recherche du CHU de Québec‐Université Laval Quebec QC Canada
| | - J. Lamontagne‐Proulx
- Faculty Pharmacy Université Laval Quebec QC Canada
- Neurosciences Division Centre de recherche du CHU de Québec‐Université Laval Quebec QC Canada
| | - S. Breton
- Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - D. Soulet
- Faculty Pharmacy Université Laval Quebec QC Canada
- Neurosciences Division Centre de recherche du CHU de Québec‐Université Laval Quebec QC Canada
| |
Collapse
|
12
|
Dynamic localization of α-tubulin acetyltransferase ATAT1 through the cell cycle in human fibroblastic KD cells. Med Mol Morphol 2018; 51:217-226. [PMID: 29869029 DOI: 10.1007/s00795-018-0195-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022]
Abstract
Acetylation of α-tubulin is a well-studied posttranscriptional modification, which is mostly catalyzed by α-tubulin N-acetyltransferase (ATAT1). ATAT1 possibly affects various cellular functions related with microtubules, such as intracellular transport, cell motility, cilia formation, and neuronal signaling. Here, we analyzed the subcellular localization of immunolabeled ATAT1 in human fibroblast KD cells through the cell cycle using confocal laser scanning microscopy. ATAT1 dramatically changed its localization through the cell cycle, depending on the mitotic phase. In interphase, immunolabeled ATAT1 was observed in centrioles, nuclei, and basal bodies if the cells projected primary cilia. ATAT1 was intensely detected as clusters in the nuclei in the G1-G2 phase. In telophase, ATAT1 colocalized with chromatids and spindle poles, and ultimately migrated to the daughter nucleus, newly synthesized centrioles, and midbody. The nucleolus is a core region of ribosomal RNA transcription, and the midbody is associated with severing and depolymerizing of microtubules in the stembody. The specific distributions of ATAT1 through the cell cycle suggest multiple functions of ATAT1, which could include acetylation of microtubules, RNA transcription activity, severing microtubules, and completion of cytokinesis.
Collapse
|
13
|
ATAT1 is essential for regulation of homeostasis-retaining cellular responses in corticotrophs along hypothalamic-pituitary-adrenal axis. Cell Tissue Res 2017; 370:169-178. [PMID: 28687926 DOI: 10.1007/s00441-017-2654-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022]
Abstract
The production and secretion of adrenocorticotropin, a proopiomelanocortin (POMC)-derived hormone, by corticotrophs in the anterior pituitary, is regulated by corticotrophin-releasing hormone (CRH) and glucocorticoids. We have previously demonstrated that adrenalectomy induces α-tubulin N-acetyltransferase 1 (ATAT1) expression and α-tubulin acetylation in corticotrophs. However, the regulatory mechanism of ATAT1 expression and the function of acetylated microtubules in corticotrophs are unclear. Here, we analyze the effect of CRH or dexamethasone on Atat1 expression in the mouse corticotroph AtT20 cell line. The expression of Atat1 was increased by CRH and decreased by dexamethasone in AtT20 cells. We examined the effect of Atat1 knockdown on the expression of POMC-associated genes and the dexamethasone-induced nuclear translocation of glucocorticoid receptor (GR) by real-time polymerase chain reaction and Western blot analysis, respectively. Atat1 knockdown resulted in a significant increase in the expression of ACTH-producing genes and decreased the dexamethasone-induced nuclear translocation of GR accompanied with a reduction in α-tubulin acetylation. Atat1 overexpression resulted in a significant increase in α-tubulin acetylation and the dexamethasone-induced nuclear translocation of GR. These results suggest that the acetylated microtubules function as the rail-line for the transportation of GR into the nucleus. We conclude that ATAT1 finely tunes the cellular responses of corticotrophs to hormonal stimulation through an intracellular feedback circuit.
Collapse
|
14
|
Expression and localization of forkhead box protein FOXJ1 in S100β-positive multiciliated cells of the rat pituitary. Med Mol Morphol 2016; 50:59-67. [PMID: 27660208 DOI: 10.1007/s00795-016-0148-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/15/2016] [Indexed: 12/13/2022]
Abstract
S100β-positive cells exist in the marginal cell layer (MCL) of the adenohypophysis and follicle structure in the parenchyma of anterior lobe (ALFS) in pituitary. They have multiple functions as phagocytes or cells that regulate hormone secretion. Majority of S100β-positive cells in the adenohypophysis express sex determining region Y-box 2 protein (SOX2), a stem cell marker; therefore, S100β/SOX2 double positive cells are also considered as one type of stem/progenitor cells. MCL and ALFS are consisting of morphologically two types of cells, i.e., multiciliated cells and non-ciliated cells. However, the relationship between the S100β-positive cells and multiciliated cells in the pituitary is largely unknown. In the present study, we first immunohistochemically verified the feature of multiciliated cells in MCL and ALFS. We then examined the expression patterns of FOXJ1, an essential expression factor for multiciliated cell-differentiation, and SOX2 in the S100β-positive multiciliated cells by in situ hybridization and immunohistochemistry. We identified anew the S100β/SOX2/FOXJ1 triple positive multiciliated cells, and revealed that they were dispersed throughout the MCL and ALFS. These results indicate that the MCL and ALFS are consisting of morphologically and functionally distinct two types of cells, i.e., S100β/SOX2 double positive non-ciliated cells and S100β/SOX2/FOXJ1 triple positive multiciliated cells.
Collapse
|
15
|
Nakakura T, Nemoto T, Suzuki T, Asano-Hoshino A, Tanaka H, Arisawa K, Nishijima Y, Kiuchi Y, Hagiwara H. Adrenalectomy facilitates ATAT1 expression and α-tubulin acetylation in ACTH-producing corticotrophs. Cell Tissue Res 2016; 366:363-370. [DOI: 10.1007/s00441-016-2441-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/28/2016] [Indexed: 12/26/2022]
|