2
|
Oka M, Shimo S, Ohno N, Imai H, Abekura Y, Koseki H, Miyata H, Shimizu K, Kushamae M, Ono I, Nozaki K, Kawashima A, Kawamata T, Aoki T. Dedifferentiation of smooth muscle cells in intracranial aneurysms and its potential contribution to the pathogenesis. Sci Rep 2020; 10:8330. [PMID: 32433495 PMCID: PMC7239886 DOI: 10.1038/s41598-020-65361-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
Smooth muscle cells (SMCs) are the major type of cells constituting arterial walls and play a role to maintain stiffness via producing extracellular matrix. Here, the loss and degenerative changes of SMCs become the major histopathological features of an intracranial aneurysm (IA), a major cause of subarachnoid hemorrhage. Considering the important role of SMCs and the loss of this type of cells in IA lesions, we in the present study subjected rats to IA models and examined how SMCs behave during disease progression. We found that, at the neck portion of IAs, SMCs accumulated underneath the internal elastic lamina according to disease progression and formed the intimal hyperplasia. As these SMCs were positive for a dedifferentiation marker, myosin heavy chain 10, and contained abundant mitochondria and rough endoplasmic reticulum, SMCs at the intimal hyperplasia were dedifferentiated and activated. Furthermore, dedifferentiated SMCs expressed some pro-inflammatory factors, suggesting the role in the formation of inflammatory microenvironment to promote the disease. Intriguingly, some SMCs at the intimal hyperplasia were positive for CD68 and contained lipid depositions, indicating similarity with atherosclerosis. We next examined a potential factor mediating dedifferentiation and recruitment of SMCs. Platelet derived growth factor (PDGF)-BB was expressed in endothelial cells at the neck portion of lesions where high wall shear stress (WSS) was loaded. PDGF-BB facilitated migration of SMCs across matrigel-coated pores in a transwell system, promoted dedifferentiation of SMCs and induced expression of pro-inflammatory genes in these cells in vitro. Because, in a stenosis model of rats, PDGF-BB expression was expressed in endothelial cells loaded in high WSS regions, and SMCs present nearby were dedifferentiated, hence a correlation existed between high WSS, PDGFB and dedifferentiation in vivo. In conclusion, dedifferentiated SMCs presumably by PDGF-BB produced from high WSS-loaded endothelial cells accumulate in the intimal hyperplasia to form inflammatory microenvironment leading to the progression of the disease.
Collapse
Affiliation(s)
- Mieko Oka
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Satoshi Shimo
- Department of Occupational Therapy, Health Science University, 7181 Kodachi, Minamitsurugun Fujikawaguchikomachi, Yamanashi, 401-0380, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, Department of Anatomy, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke City, Tochigi, 329-0498, Japan.,Division of Ultrastructural Research, National Institute for Physiological Sciences, 38 Saigonaka, Meidaiji-cho, Okazaki City, Aichi, 444-8787, Japan
| | - Hirohiko Imai
- Department of Systems Science, Graduate School of Informatics, Kyoto University, 36-1 Yoshidahomachi Saikyo-ku, Kyoto City, Kyoto, 606-8317, Japan
| | - Yu Abekura
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hirokazu Koseki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Haruka Miyata
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu City, Shiga, 520-2192, Japan
| | - Kampei Shimizu
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mika Kushamae
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Isao Ono
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Kawahara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu City, Shiga, 520-2192, Japan
| | - Akitsugu Kawashima
- Department of Neurosurgery, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Oowadashinden, Yachiyo City, Chiba, 276-8524, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawata-cho, Shinjyuku-ku, Tokyo, 162-8666, Japan
| | - Tomohiro Aoki
- Department of Molecular Pharmacology, Research Institute, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan. .,Core Research for Evolutional Science and Technology from Japan Agency for Medical Research and Development, National Cerebral and Cardiovascular Center, 6-1 Kishibeshinmachi, Suita City, Osaka, 564-8565, Japan.
| |
Collapse
|
3
|
Stumpf SK, Berghoff SA, Trevisiol A, Spieth L, Düking T, Schneider LV, Schlaphoff L, Dreha-Kulaczewski S, Bley A, Burfeind D, Kusch K, Mitkovski M, Ruhwedel T, Guder P, Röhse H, Denecke J, Gärtner J, Möbius W, Nave KA, Saher G. Ketogenic diet ameliorates axonal defects and promotes myelination in Pelizaeus-Merzbacher disease. Acta Neuropathol 2019; 138:147-161. [PMID: 30919030 PMCID: PMC6570703 DOI: 10.1007/s00401-019-01985-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/24/2022]
Abstract
Pelizaeus-Merzbacher disease (PMD) is an untreatable and fatal leukodystrophy. In a model of PMD with perturbed blood-brain barrier integrity, cholesterol supplementation promotes myelin membrane growth. Here, we show that in contrast to the mouse model, dietary cholesterol in two PMD patients did not lead to a major advancement of hypomyelination, potentially because the intact blood-brain barrier precludes its entry into the CNS. We therefore turned to a PMD mouse model with preserved blood-brain barrier integrity and show that a high-fat/low-carbohydrate ketogenic diet restored oligodendrocyte integrity and increased CNS myelination. This dietary intervention also ameliorated axonal degeneration and normalized motor functions. Moreover, in a paradigm of adult remyelination, ketogenic diet facilitated repair and attenuated axon damage. We suggest that a therapy with lipids such as ketone bodies, that readily enter the brain, can circumvent the requirement of a disrupted blood-brain barrier in the treatment of myelin disease.
Collapse
Affiliation(s)
- Sina K Stumpf
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Andrea Trevisiol
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Tim Düking
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Lennart V Schneider
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Lennart Schlaphoff
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center, 37075, Göttingen, Germany
| | - Annette Bley
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dinah Burfeind
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Miso Mitkovski
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Philipp Guder
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Heiko Röhse
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Jonas Denecke
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center, 37075, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
- Electron Microscopy Core Unit, Max-Planck-Institute of Experimental Medicine, 37075, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
5
|
Nguyen HB, Thai TQ, Sui Y, Azuma M, Fujiwara K, Ohno N. Methodological Improvements With Conductive Materials for Volume Imaging of Neural Circuits by Electron Microscopy. Front Neural Circuits 2018; 12:108. [PMID: 30532696 PMCID: PMC6265348 DOI: 10.3389/fncir.2018.00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/13/2018] [Indexed: 12/29/2022] Open
Abstract
Recent advancements in electron microscope volume imaging, such as serial imaging using scanning electron microscopy (SEM), have facilitated the acquisition of three-dimensional ultrastructural information of biological samples. These advancements help build a comprehensive understanding of the functional structures in entire organelles, cells, organs and organisms, including large-scale wiring maps of neural circuitry in various species. Advanced volume imaging of biological specimens has often been limited by artifacts and insufficient contrast, which are partly caused by problems in staining, serial sectioning and electron beam irradiation. To address these issues, methods of sample preparation have been modified and improved in order to achieve better resolution and higher signal-to-noise ratios (SNRs) in large tissue volumes. These improvements include the development of new embedding media for electron microscope imaging that have desirable physical properties such as less deformation in the electron beam and higher stability for sectioning. The optimization of embedding media involves multiple resins and filler materials including biological tissues, metallic particles and conductive carbon black. These materials alter the physical properties of the embedding media, such as conductivity, which reduces specimen charge, ameliorates damage to sections, reduces image deformation and results in better ultrastructural data. These improvements and further studies to improve electron microscope volume imaging methods provide options for better scale, quality and throughput in the three-dimensional ultrastructural analyses of biological samples. These efforts will enable a deeper understanding of neuronal circuitry and the structural foundation of basic and higher brain functions.
Collapse
Affiliation(s)
- Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
- Department of Anatomy, Faculty of Medicine, University of Medicine and Pharmacy (UMP), Ho Chi Minh City, Vietnam
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Yang Sui
- Department of Anatomy and Structural Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Morio Azuma
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Ken Fujiwara
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|