1
|
González-Castañeda Y, Marrero-Ponce Y, Guerra JO, Echevarría-Díaz Y, Pérez N, Pérez-Giménez F, Simonet AM, Macías FA, Nogueiras CM, Olazabal E, Serrano H. Computational discovery of novel anthelmintic natural compounds from Agave Brittoniana trel. Spp. Brachypus. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helminth infections are a medical problem in the world nowadays. This report used bond-based 2D quadratic indices, a bond-level QuBiLs-MAS molecular descriptor family, and Linear Discriminant Analysis (LDA) to obtain a quantitative linear model that discriminates between anthelmintic and non-anthelmintic drug-like organic-compounds. The model obtained correctly classified 87.46% and 81.82% of the training and external data sets, respectively. The developed model was used in a virtual screening to predict the biological activity of all chemicals (19) previously obtained and chemically characterized by some authors of this report from Agave brittoniana Trel. spp. Brachypus. The model identified several metabolites (12) as possible anthelmintics, and a group of 5 novel natural products was tested in an in vitro assay against Fasciola hepatica (100% effectivity at 500 µg/mL). Finally, the two best hits were evaluated in vivo in bald/c mice and the same helminth parasite using a 25 mg/kg dose. Compound 8 (Karatavinoside A) showed an efficacy of 92.2% in vivo. It is important to remark that this natural compound exhibits similar-to-superior activity as triclabendazole, the best human fasciolicide available in the market against Fasciola hepatica, resulting in a novel lead scaffold with anti-helminthic activity.
Keywords: TOMOCOMD-CARDD Software; QuBiLs-MAS, nonstochastic and stochastic bond-based quadratic indices; LDA-based QSAR model; Computational Screening, Anthelmintic Agent; Agave brittoniana Trel. spp. Brachypus, Fasciola hepatica.
Collapse
Affiliation(s)
- Yeniel González-Castañeda
- Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA)
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - Jose O. Guerra
- Chemistry Department, Faculty of Chemistry-Pharmacy. Universidad Central “Marta Abreu” de Las Villas, Santa Clara, 54830, Villa Clara, Cuba
| | - Yunaimy Echevarría-Díaz
- Universidad San Francisco de Quito, Grupo de Medicina Molecular y Traslacional (MeM&T), Escuela de Medicina, Colegio de Ciencias de la Salud (COCSA), Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE)
| | - Noel Pérez
- Colegio de Ciencias e Ingenierías “El Politécnico”, Universidad San Francisco de Quito (USFQ), Quito, Ecuador
| | - Facundo Pérez-Giménez
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - Ana M. Simonet
- Grupo de Alelopatía, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz
| | - Francisco A. Macías
- Grupo de Alelopatía, Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz
| | - Clara M. Nogueiras
- Departamento de Química Orgánica, Facultad de Química, Universidad de La Habana
| | - Ervelio Olazabal
- Chemical Bioactive Center. Universidad Central “Marta Abreu” de Las Villas, Santa Clara
| | - Hector Serrano
- Chemical Bioactive Center. Universidad Central “Marta Abreu” de Las Villas, Santa Clara
| |
Collapse
|
2
|
Bugeac CA, Ancuceanu R, Dinu M. QSAR Models for Active Substances against Pseudomonas aeruginosa Using Disk-Diffusion Test Data. Molecules 2021; 26:molecules26061734. [PMID: 33808845 PMCID: PMC8003670 DOI: 10.3390/molecules26061734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacillus included among the six “ESKAPE” microbial species with an outstanding ability to “escape” currently used antibiotics and developing new antibiotics against it is of the highest priority. Whereas minimum inhibitory concentration (MIC) values against Pseudomonas aeruginosa have been used previously for QSAR model development, disk diffusion results (inhibition zones) have not been apparently used for this purpose in the literature and we decided to explore their use in this sense. We developed multiple QSAR methods using several machine learning algorithms (support vector classifier, K nearest neighbors, random forest classifier, decision tree classifier, AdaBoost classifier, logistic regression and naïve Bayes classifier). We used four sets of molecular descriptors and fingerprints and three different methods of data balancing, together with the “native” data set. In total, 32 models were built for each set of descriptors or fingerprint and balancing method, of which 28 were selected and stacked to create meta-models. In terms of balanced accuracy, the best performance was provided by KNN, logistic regression and decision tree classifier, but the ensemble method had slightly superior results in nested cross-validation.
Collapse
Affiliation(s)
- Cosmin Alexandru Bugeac
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, Sector 2, 020956 Bucharest, Romania;
| | - Robert Ancuceanu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, Sector 2, 020956 Bucharest, Romania;
- Correspondence:
| | - Mihaela Dinu
- Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, Sector 2, 020956 Bucharest, Romania;
| |
Collapse
|
3
|
Agüero-Chapin G, Galpert D, Molina-Ruiz R, Ancede-Gallardo E, Pérez-Machado G, De la Riva GA, Antunes A. Graph Theory-Based Sequence Descriptors as Remote Homology Predictors. Biomolecules 2019; 10:E26. [PMID: 31878100 PMCID: PMC7022958 DOI: 10.3390/biom10010026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022] Open
Abstract
Alignment-free (AF) methodologies have increased in popularity in the last decades as alternative tools to alignment-based (AB) algorithms for performing comparative sequence analyses. They have been especially useful to detect remote homologs within the twilight zone of highly diverse gene/protein families and superfamilies. The most popular alignment-free methodologies, as well as their applications to classification problems, have been described in previous reviews. Despite a new set of graph theory-derived sequence/structural descriptors that have been gaining relevance in the detection of remote homology, they have been omitted as AF predictors when the topic is addressed. Here, we first go over the most popular AF approaches used for detecting homology signals within the twilight zone and then bring out the state-of-the-art tools encoding graph theory-derived sequence/structure descriptors and their success for identifying remote homologs. We also highlight the tendency of integrating AF features/measures with the AB ones, either into the same prediction model or by assembling the predictions from different algorithms using voting/weighting strategies, for improving the detection of remote signals. Lastly, we briefly discuss the efforts made to scale up AB and AF features/measures for the comparison of multiple genomes and proteomes. Alongside the achieved experiences in remote homology detection by both the most popular AF tools and other less known ones, we provide our own using the graphical-numerical methodologies, MARCH-INSIDE, TI2BioP, and ProtDCal. We also present a new Python-based tool (SeqDivA) with a friendly graphical user interface (GUI) for delimiting the twilight zone by using several similar criteria.
Collapse
Affiliation(s)
- Guillermin Agüero-Chapin
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Deborah Galpert
- Departamento de Ciencia de la Computación. Universidad Central ¨Marta Abreu¨ de Las Villas (UCLV), Santa Clara 54830, Cuba;
| | - Reinaldo Molina-Ruiz
- Centro de Bioactivos Químicos (CBQ), Universidad Central ¨Marta Abreu¨ de Las Villas (UCLV), Santa Clara 54830, Cuba;
| | - Evys Ancede-Gallardo
- Programa de Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andrés Bello, Av. República 239, Santiago 8370146, Chile;
| | - Gisselle Pérez-Machado
- EpiDisease S.L. Spin-Off of Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46980 Valencia, Spain;
| | - Gustavo A. De la Riva
- Laboratorio de Biotecnología Aplicada S. de R.L. de C.V., GRECA Inc., Carretera La Piedad-Carapán, km 3.5, La Piedad, Michoacán 59300, Mexico;
- Tecnológico Nacional de México, Instituto Tecnológico de la Piedad, Av. Ricardo Guzmán Romero, Santa Fe, La Piedad de Cavadas, Michoacán 59370, Mexico
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n 4450-208 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
4
|
Valdés-Martiní JR, Marrero-Ponce Y, García-Jacas CR, Martinez-Mayorga K, Barigye SJ, Vaz d'Almeida YS, Pham-The H, Pérez-Giménez F, Morell CA. QuBiLS-MAS, open source multi-platform software for atom- and bond-based topological (2D) and chiral (2.5D) algebraic molecular descriptors computations. J Cheminform 2017; 9:35. [PMID: 29086120 PMCID: PMC5462671 DOI: 10.1186/s13321-017-0211-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In previous reports, Marrero-Ponce et al. proposed algebraic formalisms for characterizing topological (2D) and chiral (2.5D) molecular features through atom- and bond-based ToMoCoMD-CARDD (acronym for Topological Molecular Computational Design-Computer Aided Rational Drug Design) molecular descriptors. These MDs codify molecular information based on the bilinear, quadratic and linear algebraic forms and the graph-theoretical electronic-density and edge-adjacency matrices in order to consider atom- and bond-based relations, respectively. These MDs have been successfully applied in the screening of chemical compounds of different therapeutic applications ranging from antimalarials, antibacterials, tyrosinase inhibitors and so on. To compute these MDs, a computational program with the same name was initially developed. However, this in house software barely offered the functionalities required in contemporary molecular modeling tasks, in addition to the inherent limitations that made its usability impractical. Therefore, the present manuscript introduces the QuBiLS-MAS (acronym for Quadratic, Bilinear and N-Linear mapS based on graph-theoretic electronic-density Matrices and Atomic weightingS) software designed to compute topological (0-2.5D) molecular descriptors based on bilinear, quadratic and linear algebraic forms for atom- and bond-based relations. RESULTS The QuBiLS-MAS module was designed as standalone software, in which extensions and generalizations of the former ToMoCoMD-CARDD 2D-algebraic indices are implemented, considering the following aspects: (a) two new matrix normalization approaches based on double-stochastic and mutual probability formalisms; (b) topological constraints (cut-offs) to take into account particular inter-atomic relations; (c) six additional atomic properties to be used as weighting schemes in the calculation of the molecular vectors; (d) four new local-fragments to consider molecular regions of interest; (e) number of lone-pair electrons in chemical structure defined by diagonal coefficients in matrix representations; and (f) several aggregation operators (invariants) applied over atom/bond-level descriptors in order to compute global indices. This software permits the parallel computation of the indices, contains a batch processing module and data curation functionalities. This program was developed in Java v1.7 using the Chemistry Development Kit library (version 1.4.19). The QuBiLS-MAS software consists of two components: a desktop interface (GUI) and an API library allowing for the easy integration of the latter in chemoinformatics applications. The relevance of the novel extensions and generalizations implemented in this software is demonstrated through three studies. Firstly, a comparative Shannon's entropy based variability study for the proposed QuBiLS-MAS and the DRAGON indices demonstrates superior performance for the former. A principal component analysis reveals that the QuBiLS-MAS approach captures chemical information orthogonal to that codified by the DRAGON descriptors. Lastly, a QSAR study for the binding affinity to the corticosteroid-binding globulin using Cramer's steroid dataset is carried out. CONCLUSIONS From these analyses, it is revealed that the QuBiLS-MAS approach for atom-pair relations yields similar-to-superior performance with regard to other QSAR methodologies reported in the literature. Therefore, the QuBiLS-MAS approach constitutes a useful tool for the diversity analysis of chemical compound datasets and high-throughput screening of structure-activity data.
Collapse
Affiliation(s)
- José R Valdés-Martiní
- StreelBridge Laboratories, SteelBridge Consulting Technology Solutions, Miami, FL, USA
| | - Yovani Marrero-Ponce
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Quito, Ecuador. .,Universidad San Francisco de Quito (USFQ), Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, 170157, Quito, Pichincha, Ecuador. .,Computer-Aided Molecular "Biosilico" Discovery and Bioinformatics Research International Network (CAMD-BIR IN), Cumbayá, Quito, Ecuador. .,Grupo de Investigación Ambiental (GIA), Fundación Universitaria Tecnológico de Comfenalco, Facultad de Ingenierías, Programa de Ingeniería de Procesos, Cartagena de Indias, Bolívar, Colombia. .,Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Valencia, Spain.
| | - César R García-Jacas
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México.,Escuela de Sistemas y Computación, Pontificia Universidad Católica del Ecuador Sede Esmeraldas (PUCESE), Esmeraldas, Ecuador.,Grupo de Investigación de Bioinformática, Universidad de las Ciencias Informáticas (UCI), Havana, Cuba
| | - Karina Martinez-Mayorga
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Stephen J Barigye
- Facultad de Medicina, Universidad de Las Américas, Quito, Pichincha, Ecuador
| | | | - Hai Pham-The
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi, Vietnam
| | - Facundo Pérez-Giménez
- Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - Carlos A Morell
- Laboratorio de Inteligencia Artificial, Centro de Estudios de Informática (CEI), Facultad de Matemática, Física y Computación, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Villa Clara, Cuba
| |
Collapse
|
5
|
Casañola-Martin GM, Le-Thi-Thu H, Pérez-Giménez F, Marrero-Ponce Y, Merino-Sanjuán M, Abad C, González-Díaz H. Multi-output model with Box–Jenkins operators of linear indices to predict multi-target inhibitors of ubiquitin–proteasome pathway. Mol Divers 2015; 19:347-56. [DOI: 10.1007/s11030-015-9571-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/14/2015] [Indexed: 12/29/2022]
|
6
|
Speck-Planche A, Cordeiro MNDS. Multitasking models for quantitative structure–biological effect relationships: current status and future perspectives to speed up drug discovery. Expert Opin Drug Discov 2015; 10:245-56. [DOI: 10.1517/17460441.2015.1006195] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
7
|
Medina Marrero R, Marrero-Ponce Y, Barigye SJ, Echeverría Díaz Y, Acevedo-Barrios R, Casañola-Martín GM, García Bernal M, Torrens F, Pérez-Giménez F. QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:943-58. [PMID: 26567876 DOI: 10.1080/1062936x.2015.1104517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The QuBiLs-MAS approach is used for the in silico modelling of the antifungal activity of organic molecules. To this effect, non-stochastic (NS) and simple-stochastic (SS) atom-based quadratic indices are used to codify chemical information for a comprehensive dataset of 2478 compounds having a great structural variability, with 1087 of them being antifungal agents, covering the broadest antifungal mechanisms of action known so far. The NS and SS index-based antifungal activity classification models obtained using linear discriminant analysis (LDA) yield correct classification percentages of 90.73% and 92.47%, respectively, for the training set. Additionally, these models are able to correctly classify 92.16% and 87.56% of 706 compounds in an external test set. A comparison of the statistical parameters of the QuBiLs-MAS LDA-based models with those for models reported in the literature reveals comparable to superior performance, although the latter were built over much smaller and less diverse datasets, representing fewer mechanisms of action. It may therefore be inferred that the QuBiLs-MAS method constitutes a valuable tool useful in the design and/or selection of new and broad spectrum agents against life-threatening fungal infections.
Collapse
Affiliation(s)
- R Medina Marrero
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- b Department of Microbiology , Chemical Bioactive Center, Central University of Las Villas , Villa Clara , Cuba
| | - Y Marrero-Ponce
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- c Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas , Universidad Tecnológica de Bolívar , Cartagena de Indias , Bolívar , Colombia
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
- h Grupo de Investigación Microbiología y Ambiente (GIMA) . Programa de Bacteriología, Facultad Ciencias de la Salud, Universidad de San Buenaventura , Calle Real de Ternera, 130010, Cartagena (Bolivar) , Colombia
| | - S J Barigye
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- e Departamento de Química , Universidade Federal de Lavras , Lavras , MG , Brazil
| | - Y Echeverría Díaz
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
| | - R Acevedo-Barrios
- c Grupo de Investigación en Estudios Químicos y Biológicos, Facultad de Ciencias Básicas , Universidad Tecnológica de Bolívar , Cartagena de Indias , Bolívar , Colombia
| | - G M Casañola-Martín
- a Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research International Network (CAMD-BIR-IN) , Cartagena de Indias , Bolivar , Colombia
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
- f Facultad de Ingeniería Ambiental , Universidad Estatal Amazónica , Puyo , Ecuador
| | - M García Bernal
- b Department of Microbiology , Chemical Bioactive Center, Central University of Las Villas , Villa Clara , Cuba
| | - F Torrens
- g Institut Universitari de Ciència Molecular, Universitat de València , Valencia , Spain
| | - F Pérez-Giménez
- d Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia , Universitat de València , Valencia , Spain
| |
Collapse
|
8
|
Speck-Planche A, Cordeiro MNDS. A general ANN-based multitasking model for the discovery of potent and safer antibacterial agents. Methods Mol Biol 2015; 1260:45-64. [PMID: 25502375 DOI: 10.1007/978-1-4939-2239-0_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bacteria have been one of the world's most dangerous and deadliest pathogens for mankind, nowadays giving rise to significant public health concerns. Given the prevalence of these microbial pathogens and their increasing resistance to existing antibiotics, there is a pressing need for new antibacterial drugs. However, development of a successful drug is a complex, costly, and time-consuming process. Quantitative Structure-Activity Relationships (QSAR)-based approaches are valuable tools for shortening the time of lead compound identification but also for focusing and limiting time-costly synthetic activities and in vitro/vivo evaluations. QSAR-based approaches, supported by powerful statistical techniques such as artificial neural networks (ANNs), have evolved to the point of integrating dissimilar types of chemical and biological data. This chapter reports an overview of the current research and potential applications of QSAR modeling tools toward the rational design of more efficient antibacterial agents. Particular emphasis is given to the setup of multitasking models along with ANNs aimed at jointly predicting different antibacterial activities and safety profiles of drugs/chemicals under diverse experimental conditions.
Collapse
Affiliation(s)
- A Speck-Planche
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | | |
Collapse
|
9
|
Blanchet MF, St-Onge K, Lisi V, Robitaille J, Hamel S, Major F. Computational identification of RNA functional determinants by three-dimensional quantitative structure-activity relationships. Nucleic Acids Res 2014; 42:11261-71. [PMID: 25200082 PMCID: PMC4176186 DOI: 10.1093/nar/gku816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anti-infection drugs target vital functions of infectious agents, including their ribosome and other essential non-coding RNAs. One of the reasons infectious agents become resistant to drugs is due to mutations that eliminate drug-binding affinity while maintaining vital elements. Identifying these elements is based on the determination of viable and lethal mutants and associated structures. However, determining the structure of enough mutants at high resolution is not always possible. Here, we introduce a new computational method, MC-3DQSAR, to determine the vital elements of target RNA structure from mutagenesis and available high-resolution data. We applied the method to further characterize the structural determinants of the bacterial 23S ribosomal RNA sarcin–ricin loop (SRL), as well as those of the lead-activated and hammerhead ribozymes. The method was accurate in confirming experimentally determined essential structural elements and predicting the viability of new SRL variants, which were either observed in bacteria or validated in bacterial growth assays. Our results indicate that MC-3DQSAR could be used systematically to evaluate the drug-target potentials of any RNA sites using current high-resolution structural data.
Collapse
Affiliation(s)
- Marc-Frédérick Blanchet
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Karine St-Onge
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Véronique Lisi
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Julie Robitaille
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - Sylvie Hamel
- Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada Department of Computer Science and Operations Research, Université de Montréal, PO Box 6128, Downtown Station, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
10
|
Discovery of novel anti-inflammatory drug-like compounds by aligning in silico and in vivo screening: The nitroindazolinone chemotype. Eur J Med Chem 2011; 46:5736-53. [DOI: 10.1016/j.ejmech.2011.07.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/15/2022]
|
11
|
Speck-Planche A, Kleandrova VV, Luan F, Cordeiro MND. Multi-target drug discovery in anti-cancer therapy: Fragment-based approach toward the design of potent and versatile anti-prostate cancer agents. Bioorg Med Chem 2011; 19:6239-44. [DOI: 10.1016/j.bmc.2011.09.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 07/24/2011] [Accepted: 09/08/2011] [Indexed: 11/25/2022]
|
12
|
Ligand-based discovery of novel trypanosomicidal drug-like compounds: In silico identification and experimental support. Eur J Med Chem 2011; 46:3324-30. [DOI: 10.1016/j.ejmech.2011.04.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 01/08/2023]
|
13
|
Rescigno A, Casañola-Martin GM, Sanjust E, Zucca P, Marrero-Ponce Y. Vanilloid derivatives as tyrosinase inhibitors driven by virtual screening-based QSAR models. Drug Test Anal 2010; 3:176-81. [PMID: 21125547 DOI: 10.1002/dta.187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 11/06/2022]
Abstract
A number of vanilloids have been tested as tyrosinase inhibitors using Ligand-Based Virtual Screening (LBVS) driven by QSAR (Quantitative Structure-Activity Relationship) models as the multi-agent classification system. A total of 81 models were used to screen this family. Then, a preliminary cluster analysis of the selected chemicals was carried out based on their bioactivity to detect possible similar substructural features among these compounds and the active database used in the QSAR model construction. The compounds identified were tested in vitro to corroborate the results obtained in silico. Among them, two chemicals, isovanillin (K(M) (app) = 1.08 mM) near to kojic acid (reference drug) in one cluster and isovanillyl alcohol (K(M) (app) = 0.88 mM) at the same distance as hydroquinone (reference drug) in another cluster showed inhibitory activity against tyrosinase. The algorithm proposed here could result in a suitable approach for faster and more effective identification of hit and/or lead compounds with tyrosinase inhibitory activity, helping to shorten the long pipeline in the research of novel depigmenting agents to treat skin disorders.
Collapse
Affiliation(s)
- Antonio Rescigno
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | | | | | | | | |
Collapse
|
14
|
Design, synthesis and biological evaluation of 1,3,4-oxadiazole derivatives. Eur J Med Chem 2010; 45:4963-7. [DOI: 10.1016/j.ejmech.2010.08.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 06/04/2010] [Accepted: 08/02/2010] [Indexed: 11/23/2022]
|
15
|
Casañola-Martin GM, Marrero-Ponce Y, Khan MTH, Khan SB, Torrens F, Pérez-Jiménez F, Rescigno A, Abad C. Bond-based 2D quadratic fingerprints in QSAR studies: virtual and in vitro tyrosinase inhibitory activity elucidation. Chem Biol Drug Des 2010; 76:538-45. [PMID: 20964806 DOI: 10.1111/j.1747-0285.2010.01032.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this report, we show the results of quantitative structure-activity relationship (QSAR) studies of tyrosinase inhibitory activity, by using the bond-based quadratic indices as molecular descriptors (MDs) and linear discriminant analysis (LDA), to generate discriminant functions to predict the anti-tyrosinase activity. The best two models [Eqs (6) and (12)] out of the total 12 QSAR models developed here show accuracies of 93.51% and 91.21%, as well as high Matthews correlation coefficients (C) of 0.86 and 0.82, respectively, in the training set. The validation external series depicts values of 90.00% and 89.44% for these best two equations (6) and (12), respectively. Afterwards, a second external prediction data are used to perform a virtual screening of compounds reported in the literature as active (tyrosinase inhibitors). In a final step, a series of lignans is analysed using the in silico-developed models, and in vitro corroboration of the activity is carried out. An issue of great importance to remark here is that all compounds present greater inhibition values than Kojic acid (standard tyrosinase inhibitor: IC₅₀ = 16.67 μm). The current obtained results could be used as a framework to increase the speed, in the biosilico discovery of leads for the treatment of skin disorders.
Collapse
|
16
|
Marrero-Ponce Y, Martínez-Albelo ER, Casañola-Martín GM, Castillo-Garit JA, Echevería-Díaz Y, Zaldivar VR, Tygat J, Borges JER, García-Domenech R, Torrens F, Pérez-Giménez F. Bond-based linear indices of the non-stochastic and stochastic edge-adjacency matrix. 1. Theory and modeling of ChemPhys properties of organic molecules. Mol Divers 2010; 14:731-53. [DOI: 10.1007/s11030-009-9201-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
|
17
|
Castillo-Garit J, Marrero-Ponce Y, Torrens F, García-Domenech R, Rodríguez-Borges J. Applications of Bond-Based 3D-Chiral Quadratic Indices in QSAR Studies Related to Central Chirality Codification. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200960085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Castillo-Garit JA, Vega MC, Rolon M, Marrero-Ponce Y, Kouznetsov VV, Torres DFA, Gómez-Barrio A, Bello AA, Montero A, Torrens F, Pérez-Giménez F. Computational discovery of novel trypanosomicidal drug-like chemicals by using bond-based non-stochastic and stochastic quadratic maps and linear discriminant analysis. Eur J Pharm Sci 2009; 39:30-6. [PMID: 19854271 DOI: 10.1016/j.ejps.2009.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 10/01/2009] [Accepted: 10/13/2009] [Indexed: 11/28/2022]
Abstract
Herein we present results of a quantitative structure-activity relationship (QSAR) studies to classify and design, in a rational way, new antitrypanosomal compounds by using non-stochastic and stochastic bond-based quadratic indices. A data set of 440 organic chemicals, 143 with antitrypanosomal activity and 297 having other clinical uses, is used to develop QSAR models based on linear discriminant analysis (LDA). Non-stochastic model correctly classifies more than 93% and 95% of chemicals in both training and external prediction groups, respectively. On the other hand, the stochastic model shows an accuracy of about the 87% for both series. As an experiment of virtual lead generation, the present approach is finally satisfactorily applied to the virtual evaluation of 9 already synthesized in house compounds. The in vitro antitrypanosomal activity of this series against epimastigote forms of Trypanosoma cruzi is assayed. The model is able to predict correctly the behaviour for the majority of these compounds. Four compounds (FER16, FER32, FER33 and FER 132) showed more than 70% of epimastigote inhibition at a concentration of 100 microg/mL (86.74%, 78.12%, 88.85% and 72.10%, respectively) and two of these chemicals, FER16 (78.22% of AE) and FER33 (81.31% of AE), also showed good activity at a concentration of 10 microg/mL. At the same concentration, compound FER16 showed lower value of cytotoxicity (15.44%), and compound FER33 showed very low value of 1.37%. Taking into account all these results, we can say that these three compounds can be optimized in forthcoming works, but we consider that compound FER33 is the best candidate. Even though none of them resulted more active than Nifurtimox, the current results constitute a step forward in the search for efficient ways to discover new lead antitrypanosomals.
Collapse
Affiliation(s)
- Juan Alberto Castillo-Garit
- Applied Chemistry Research Center, Faculty of Chemistry-Pharmacy, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nucleotide's bilinear indices: novel bio-macromolecular descriptors for bioinformatics studies of nucleic acids. I. Prediction of paromomycin's affinity constant with HIV-1 Psi-RNA packaging region. J Theor Biol 2009; 259:229-41. [PMID: 19272394 DOI: 10.1016/j.jtbi.2009.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 02/03/2023]
Abstract
A new set of nucleotide-based bio-macromolecular descriptors are presented. This novel approach to bio-macromolecular design from a linear algebra point of view is relevant to nucleic acids quantitative structure-activity relationship (QSAR) studies. These bio-macromolecular indices are based on the calculus of bilinear maps on Re(n)[b(mk)(x (m),y (m)):Re(n) x Re(n)-->Re] in canonical basis. Nucleic acid's bilinear indices are calculated from kth power of non-stochastic and stochastic nucleotide's graph-theoretic electronic-contact matrices, M(m)(k) and (s)M(m)(k), respectively. That is to say, the kth non-stochastic and stochastic nucleic acid's bilinear indices are calculated using M(m)(k) and (s)M(m)(k) as matrix operators of bilinear transformations. Moreover, biochemical information is codified by using different pair combinations of nucleotide-base properties as weightings (experimental molar absorption coefficient epsilon(260) at 260 nm and pH=7.0, first (Delta E(1)) and second (Delta E(2)) single excitation energies in eV, and first (f(1)) and second (f(2)) oscillator strength values (of the first singlet excitation energies) of the nucleotide DNA-RNA bases. As example of this approach, an interaction study of the antibiotic paromomycin with the packaging region of the HIV-1 Psi-RNA have been performed and it have been obtained several linear models in order to predict the interaction strength. The best linear model obtained by using non-stochastic bilinear indices explains about 91% of the variance of the experimental Log K (R=0.95 and s=0.08 x 10(-4)M(-1)) as long as the best stochastic bilinear indices-based equation account for 93% of the Log K variance (R=0.97 and s=0.07 x 10(-4)M(-1)). The leave-one-out (LOO) press statistics, evidenced high predictive ability of both models (q(2)=0.86 and s(cv)=0.09 x 10(-4)M(-1) for non-stochastic and q(2)=0.91 and s(cv)=0.08 x 10(-4)M(-1) for stochastic bilinear indices). The nucleic acid's bilinear indices-based models compared favorably with other nucleic acid's indices-based approaches reported nowadays. These models also permit the interpretation of the driving forces of the interaction process. In this sense, developed equations involve short-reaching (k<or=3), middle-reaching (4<k<9), and far-reaching (k=10 or greater) nucleotide's bilinear indices. This situation points to electronic and topologic nucleotide's backbone interactions control of the stability profile of paromomycin-RNA complexes. Consequently, the present approach represents a novel and rather promising way to theoretical-biology studies.
Collapse
|
20
|
Cruz-Monteagudo M, Borges F, Cordeiro MNDS. Desirability-based multiobjective optimization for global QSAR studies: application to the design of novel NSAIDs with improved analgesic, antiinflammatory, and ulcerogenic profiles. J Comput Chem 2008; 29:2445-59. [PMID: 18452123 DOI: 10.1002/jcc.20994] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Up to now, very few reports have been published concerning the application of multiobjective optimization (MOOP) techniques to quantitative structure-activity relationship (QSAR) studies. However, none reports the optimization of objectives related directly to the desired pharmaceutical profile of the drug. In this work, for the first time, it is proposed a MOOP method based on Derringer's desirability function that allows conducting global QSAR studies considering simultaneously the pharmacological, pharmacokinetic and toxicological profile of a set of molecule candidates. The usefulness of the method is demonstrated by applying it to the simultaneous optimization of the analgesic, antiinflammatory, and ulcerogenic properties of a library of fifteen 3-(3-methylphenyl)-2-substituted amino-3H-quinazolin-4-one compounds. The levels of the predictor variables producing concurrently the best possible compromise between these properties is found and used to design a set of new optimized drug candidates. Our results also suggest the relevant role of the bulkiness of alkyl substituents on the C-2 position of the quinazoline ring over the ulcerogenic properties for this family of compounds. Finally, and most importantly, the desirability-based MOOP method proposed is a valuable tool and shall aid in the future rational design of novel successful drugs.
Collapse
Affiliation(s)
- Maykel Cruz-Monteagudo
- Physico-Chemical Molecular Research Unit, Department of Organic Chemistry, Faculty of Pharmacy, University of Porto, 4150-047 Porto, Portugal.
| | | | | |
Collapse
|
21
|
Castillo-Garit JA, Marrero-Ponce Y, Torrens F, García-Domenech R, Romero-Zaldivar V. Bond-based 3D-chiral linear indices: Theory and QSAR applications to central chirality codification. J Comput Chem 2008; 29:2500-12. [DOI: 10.1002/jcc.20964] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Rivera-Borroto O, Marrero-Ponce Y, Meneses-Marcel A, Escario J, Gómez Barrio A, Arán V, Martins Alho M, Montero Pereira D, Nogal J, Torrens F, Ibarra-Velarde F, Montenegro Y, Huesca-Guillén A, Rivera N, Vogel C. Discovery of Novel Trichomonacidals Using LDA-Driven QSAR Models and Bond-Based Bilinear Indices as Molecular Descriptors. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/qsar.200610165] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Cruz-Monteagudo M, Borges F, Cordeiro MNDS, Cagide Fajin JL, Morell C, Ruiz RM, Cañizares-Carmenate Y, Dominguez ER. Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries. ACTA ACUST UNITED AC 2008; 10:897-913. [PMID: 18855460 DOI: 10.1021/cc800115y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Up to now, very few applications of multiobjective optimization (MOOP) techniques to quantitative structure-activity relationship (QSAR) studies have been reported in the literature. However, none of them report the optimization of objectives related directly to the final pharmaceutical profile of a drug. In this paper, a MOOP method based on Derringer's desirability function that allows conducting global QSAR studies, simultaneously considering the potency, bioavailability, and safety of a set of drug candidates, is introduced. The results of the desirability-based MOOP (the levels of the predictor variables concurrently producing the best possible compromise between the properties determining an optimal drug candidate) are used for the implementation of a ranking method that is also based on the application of desirability functions. This method allows ranking drug candidates with unknown pharmaceutical properties from combinatorial libraries according to the degree of similarity with the previously determined optimal candidate. Application of this method will make it possible to filter the most promising drug candidates of a library (the best-ranked candidates), which should have the best pharmaceutical profile (the best compromise between potency, safety and bioavailability). In addition, a validation method of the ranking process, as well as a quantitative measure of the quality of a ranking, the ranking quality index (Psi), is proposed. The usefulness of the desirability-based methods of MOOP and ranking is demonstrated by its application to a library of 95 fluoroquinolones, reporting their gram-negative antibacterial activity and mammalian cell cytotoxicity. Finally, the combined use of the desirability-based methods of MOOP and ranking proposed here seems to be a valuable tool for rational drug discovery and development.
Collapse
Affiliation(s)
- Maykel Cruz-Monteagudo
- Physico-Chemical Molecular Research Unit, Department of Organic Chemistry, Faculty of Pharmacy, REQUIMTE, Department of Chemistry, and CIQ-UP, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Castillo-Garit JA, Martinez-Santiago O, Marrero-Ponce Y, Casañola-Martín GM, Torrens F. Atom-based non-stochastic and stochastic bilinear indices: Application to QSPR/QSAR studies of organic compounds. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.08.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Marrero-Ponce Y, Khan MTH, Casañola Martín GM, Ather A, Sultankhodzhaev MN, Torrens F, Rotondo R. Prediction of tyrosinase inhibition activity using atom-based bilinear indices. ChemMedChem 2008; 2:449-78. [PMID: 17366651 DOI: 10.1002/cmdc.200600186] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A set of novel atom-based molecular fingerprints is proposed based on a bilinear map similar to that defined in linear algebra. These molecular descriptors (MDs) are proposed as a new means of molecular parametrization easily calculated from 2D molecular information. The nonstochastic and stochastic molecular indices match molecular structure provided by molecular topology by using the kth nonstochastic and stochastic graph-theoretical electronic-density matrices, M(k) and S(k), respectively. Thus, the kth nonstochastic and stochastic bilinear indices are calculated using M(k) and S(k) as matrix operators of bilinear transformations. Chemical information is coded by using different pair combinations of atomic weightings (mass, polarizability, vdW volume, and electronegativity). The results of QSAR studies of tyrosinase inhibitors using the new MDs and linear discriminant analysis (LDA) demonstrate the ability of the bilinear indices in testing biological properties. A database of 246 structurally diverse tyrosinase inhibitors was assembled. An inactive set of 412 drugs with other clinical uses was used; both active and inactive sets were processed by hierarchical and partitional cluster analyses to design training and predicting sets. Twelve LDA-based QSAR models were obtained, the first six using the nonstochastic total and local bilinear indices and the last six with the stochastic MDs. The discriminant models were applied; globally good classifications of 99.58 and 89.96 % were observed for the best nonstochastic and stochastic bilinear indices models in the training set along with high Matthews correlation coefficients (C) of 0.99 and 0.79, respectively, in the learning set. External prediction sets used to validate the models obtained were correctly classified, with accuracies of 100 and 87.78 %, respectively, yielding C values of 1.00 and 0.73. This subset contains 180 active and inactive compounds not considered to fit the models. A simulated virtual screen demonstrated this approach in searching tyrosinase inhibitors from compounds never considered in either training or predicting series. These fitted models permitted the selection of new cycloartane compounds isolated from herbal plants as new tyrosinase inhibitors. A good correspondence between theoretical and experimental inhibitory effects on tyrosinase was observed; compound CA6 (IC(50)=1.32 microM) showed higher activity than the reference compounds kojic acid (IC(50)=16.67 microM) and L-mimosine (IC(50)=3.68 microM).
Collapse
Affiliation(s)
- Yovani Marrero-Ponce
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna, Poligon la Coma s/n (detras de Canal Nou) P.O. Box 22085, 46071 Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Marrero-Ponce Y, Meneses-Marcel A, Rivera-Borroto OM, García-Domenech R, De Julián-Ortiz JV, Montero A, Escario JA, Barrio AG, Pereira DM, Nogal JJ, Grau R, Torrens F, Vogel C, Arán VJ. Bond-based linear indices in QSAR: computational discovery of novel anti-trichomonal compounds. J Comput Aided Mol Des 2008; 22:523-40. [DOI: 10.1007/s10822-008-9171-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 01/05/2008] [Indexed: 10/22/2022]
|
27
|
Taft CA, Da Silva VB, Da Silva CHTDP. Current topics in computer-aided drug design. J Pharm Sci 2008; 97:1089-98. [PMID: 18214973 DOI: 10.1002/jps.21293] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The addition of computer-aided drug design (CADD) technologies to the research and drug discovery approaches could lead to a reduction of up to 50% in the cost of drug design. Designing a drug is the process of finding or creating a molecule which has a specific activity on a biological organism. Development and drug discovery is a time-consuming, expensive, and interdisciplinary process whereas scientific advancements during the past two decades have altered the way pharmaceutical research produces new bioactive molecules. Advances in computational techniques and hardware solutions have enabled in silico methods to speed up lead optimization and identification. We will review current topics in computer-aided molecular design underscoring some of the most recent approaches and interdisciplinary processes. We will discuss some of the most efficient pathways and design.
Collapse
Affiliation(s)
- Carlton A Taft
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca, 22290-180 Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
28
|
Castillo-Garit JA, Marrero-Ponce Y, Torrens F, García-Domenech R. Estimation of ADME Properties in Drug Discovery: Predicting Caco-2 Cell Permeability Using Atom-Based Stochastic and Non-stochastic Linear Indices. J Pharm Sci 2008; 97:1946-76. [PMID: 17724669 DOI: 10.1002/jps.21122] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The in vitro determination of the permeability through cultured Caco-2 cells is the most often-used in vitro model for drug absorption. In this report, we use the largest data set of measured P(Caco-2), consisting of 157 structurally diverse compounds. Linear discriminant analysis (LDA) was used to obtain quantitative models that discriminate higher absorption compounds from those with moderate-poorer absorption. The best LDA model has an accuracy of 90.58% and 84.21% for training and test set. The percentage of good correlation, in the virtual screening of 241 drugs with the reported values of the percentage of human intestinal absorption (HIA), was greater than 81%. In addition, multiple linear regression models were developed to predict Caco-2 permeability with determination coefficients of 0.71 and 0.72. Our method compares favorably with other approaches implemented in the Dragon software, as well as other methods from the international literature. These results suggest that the proposed method is a good tool for studying the oral absorption of drug candidates.
Collapse
Affiliation(s)
- Juan A Castillo-Garit
- Applied Chemistry Research Center, Central University of Las Villas, Santa Clara, 54830 Villa Clara, Cuba.
| | | | | | | |
Collapse
|
29
|
Casañola-Martín GM, Marrero-Ponce Y, Khan MTH, Ather A, Khan KM, Torrens F, Rotondo R. Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays. Eur J Med Chem 2007; 42:1370-81. [PMID: 17637486 DOI: 10.1016/j.ejmech.2007.01.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
QSAR (quantitative structure-activity relationship) studies of tyrosinase inhibitors employing Dragon descriptors and linear discriminant analysis (LDA) are presented here. A data set of 653 compounds, 245 with tyrosinase inhibitory activity and 408 having other clinical uses were used. The active data set was processed by k-means cluster analysis in order to design training and prediction series. Seven LDA-based QSAR models were obtained. The discriminant functions applied showed a globally good classification of 99.79% for the best model Class=-96.067+1.988 x 10(2)X0Av +9 1.907 BIC3 + 6.853 CIC1 in the training set. External validation processes to assess the robustness and predictive power of the obtained model were carried out. This external prediction set had an accuracy of 99.44%. After that, the developed models were used in ligand-based virtual screening of tyrosinase inhibitors from the literature and never considered in either training or predicting series. In this case, all screened chemicals were correctly classified by the LDA-based QSAR models. As a final point, these fitted models were used in the screening of new bipiperidine series as new tyrosinase inhibitors. These methods are an adequate alternative to the process of selection/identification of new bioactive compounds. The biosilico assays and in vitro results of inhibitory activity on mushroom tyrosinase showed good correspondence. It is important to stand out that compound BP4 (IC(50)=1.72 microM) showed higher activity in the inhibition against the enzyme than reference compound kojic acid (IC(50)=16.67 microM) and l-mimosine (IC(50)=3.68 microM). These results support the role of biosilico algorithm for the identification of new tyrosinase inhibitor compounds.
Collapse
Affiliation(s)
- Gerardo M Casañola-Martín
- Unit of Computer-Aided Molecular Biosilico Discovery and Bioinformatic Research (CAMD-BIR Unit), Department of Pharmacy, Faculty of Chemistry-Pharmacy, Central University of Las Villas, Santa Clara, 54830 Villa Clara, Cuba
| | | | | | | | | | | | | |
Collapse
|
30
|
Castillo-Garit JA, Marrero-Ponce Y, Torrens F, Rotondo R. Atom-based stochastic and non-stochastic 3D-chiral bilinear indices and their applications to central chirality codification. J Mol Graph Model 2007; 26:32-47. [PMID: 17110145 DOI: 10.1016/j.jmgm.2006.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 09/08/2006] [Accepted: 09/20/2006] [Indexed: 11/16/2022]
Abstract
Non-stochastic and stochastic 2D bilinear indices have been generalized to codify chemical structure information for chiral drugs, making use of a trigonometric 3D-chirality correction factor. In order to evaluate the effectiveness of this novel approach in drug design we have modeled the angiotensin-converting enzyme inhibitory activity of perindoprilate's sigma-stereoisomers combinatorial library. Two linear discriminant analysis models, using non-stochastic and stochastic linear indices, were obtained. The models had shown an accuracy of 95.65% for the training set and 100% for the external prediction set. Next the prediction of the sigma-receptor antagonists of chiral 3-(3-hydroxyphenyl)piperidines by multiple linear regression analysis was carried out. Two statistically significant QSAR models were obtained when non-stochastic (R(2)=0.953 and s=0.238) and stochastic (R(2)=0.961 and s=0.219) 3D-chiral bilinear indices were used. These models showed adequate predictive power (assessed by the leave-one-out cross-validation experiment) yielding values of q(2)=0.935 (s(cv)=0.259) and q(2)=0.946 (s(cv)=0.235), respectively. Finally, the prediction of the corticosteroid-binding globulin binding affinity of steroids set was performed. The obtained results are rather similar to most of the 3D-QSAR approaches reported so far. The validation of this method was achieved by comparison with previous reports applied to the same data set. The non-stochastic and stochastic 3D-chiral linear indices appear to provide a very interesting alternative to other more common 3D-QSAR descriptors.
Collapse
Affiliation(s)
- Juan A Castillo-Garit
- Applied Chemistry Research Center, Central University of Las Villas, Santa Clara, 54830 Villa Clara, Cuba.
| | | | | | | |
Collapse
|
31
|
Ponce Y, Khan M, Martín G, Ather A, Sultankhodzhaev M, Torrens F, Rotondo R, Alvarado Y. Atom-Based 2D Quadratic Indices in Drug Discovery of Novel Tyrosinase Inhibitors: Results ofIn Silico Studies Supported by Experimental Results. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/qsar.200610156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Marrero-Ponce Y, Khan MTH, Casañola-Martín GM, Ather A, Sultankhodzhaev MN, García-Domenech R, Torrens F, Rotondo R. Bond-based 2D TOMOCOMD-CARDD approach for drug discovery: aiding decision-making in 'in silico' selection of new lead tyrosinase inhibitors. J Comput Aided Mol Des 2007; 21:167-88. [PMID: 17333484 DOI: 10.1007/s10822-006-9094-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 12/02/2006] [Indexed: 11/25/2022]
Abstract
In this paper, we present a new set of bond-level TOMOCOMD-CARDD molecular descriptors (MDs), the bond-based bilinear indices, based on a bilinear map similar to those defined in linear algebra. These novel MDs are used here in Quantitative Structure-Activity Relationship (QSAR) studies of tyrosinase inhibitors, for finding functions that discriminate between the tyrosinase inhibitor compounds and inactive ones. In total 14 models were obtained and the best two discriminant functions (Eqs. 32 and 33) shown globally good classification of 91.00% and 90.17%, respectively, in the training set. The test set had accuracies of 93.33% and 88.89% for the models 32 and 33, correspondingly. A simulated virtual screening was also carried out to prove the quality of the determined models. In a final step, the fitted models were used in the biosilico identification of new synthesized tetraketones, where a good agreement could be observed between the theoretical and experimental results. Four compounds of the novel bioactive chemicals discovered as tyrosinase inhibitors: TK10 (IC(50) = 2.09 microM), TK11 (IC(50) = 2.61 microM), TK21 (IC(50) = 2.06 microM), TK23 (IC(50) = 3.19 microM), showed more potent activity than L-mimose (IC(50) = 3.68 microM). Besides, for this study a heterogeneous database of tyrosinase inhibitors was collected, and could be a useful tool for the scientist in the domain of tyrosinase enzyme researches. The current report could help to shed some clues in the identification of new chemicals that inhibits enzyme tyrosinase, for entering in the pipeline of drug discovery development.
Collapse
Affiliation(s)
- Yovani Marrero-Ponce
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna, Poligon la Coma s/n (detras de Canal Nou), Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Marrero-Ponce Y, Torrens F, Alvarado YJ, Rotondo R. Bond-based global and local (bond, group and bond-type) quadratic indices and their applications to computer-aided molecular design. 1. QSPR studies of diverse sets of organic chemicals. J Comput Aided Mol Des 2006; 20:685-701. [PMID: 17186417 DOI: 10.1007/s10822-006-9089-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 10/18/2006] [Indexed: 11/26/2022]
Abstract
The concept of atom-based quadratic indices is extended to a series of molecular descriptors (MDs) (both total and local) based on adjacency between edges. The kth edge-adjacency matrix (E ( k )) denotes the matrix of bond-based quadratic indices (non-stochastic) with respect to the canonical basis set. The kth "stochastic" edge-adjacency matrix, ES ( k ), is here proposed as a new molecular representation easily calculated from E ( k ). Then, the kth stochastic bond-based quadratic indices are calculated using ES ( k ) as operators of quadratic transformations. The study of six representative physicochemical properties of octane isomers was used to compare the ability of both series of MDs to produce significant quantitative structure-property relationship (QSPR) models. Moreover, the general performance of the new MDs in this QSPR study has been evaluated with respect to other 2D/3D well-known sets of indices and the obtained results shown a quite satisfactory behavior of the present method. The novel bond-level MDs were also used for the description and prediction of the boiling point of 28 alkyl-alcohols and to the modeling of the specific rate constant (log k) of 34 derivatives of 2-furylethylenes. These models were statistically significant and showed very good stability to data variation in leave-one-out (LOO) cross-validation experiment. The comparison with other approaches (edge- and vertices-based connectivity indices, total and local spectral moments, and quantum chemical descriptors as well as E-state/biomolecular encounter parameters) expose a good behavior of our method in this QSPR studies. The approach described in this report appears to be a very promising structural invariant, useful for QSPR/QSAR studies, similarity/diversity analysis, and computer-aided "rational" molecular (drug) design.
Collapse
Affiliation(s)
- Yovani Marrero-Ponce
- Unit of Computer-Aided Molecular 'Biosilico' Discovery and Bioinformatic Research (CAMD-BIR Unit), Faculty of Chemistry-Pharmacy, Central University of Las Villas, Santa Clara, Villa Clara, 54830, Cuba.
| | | | | | | |
Collapse
|
34
|
Marrero-Ponce Y, Meneses-Marcel A, Castillo-Garit JA, Machado-Tugores Y, Escario JA, Barrio AG, Pereira DM, Nogal-Ruiz JJ, Arán VJ, Martínez-Fernández AR, Torrens F, Rotondo R, Ibarra-Velarde F, Alvarado YJ. Predicting antitrichomonal activity: A computational screening using atom-based bilinear indices and experimental proofs. Bioorg Med Chem 2006; 14:6502-24. [PMID: 16875830 DOI: 10.1016/j.bmc.2006.06.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
Existing Trichomonas vaginalis therapies are out of reach for most trichomoniasis people in developing countries and, where available, they are limited by their toxicity (mainly in pregnant women) and their cost. New antitrichomonal agents are needed to combat emerging metronidazole-resistant trichomoniasis and reduce the side effects associated with currently available drugs. Toward this end, atom-based bilinear indices, a new TOMOCOMD-CARDD molecular descriptor, and linear discriminant analysis (LDA) were used to discover novel, potent, and non-toxic lead trichomonacidal chemicals. Two discriminant functions were obtained with the use of non-stochastic and stochastic atom-type bilinear indices for heteroatoms and H-bonding of heteroatoms. These atomic-level molecular descriptors were calculated using a weighting scheme that includes four atomic labels, namely atomic masses, van der Waals volumes, atomic polarizabilities, and atomic electronegativities in Pauling scale. The obtained LDA-based QSAR models, using non-stochastic and stochastic indices, were able to classify correctly 94.51% (90.63%) and 93.41% (93.75%) of the chemicals in training (test) sets, respectively. They showed large Matthews' correlation coefficients (C); 0.89 (0.79) and 0.87 (0.85), for the training (test) sets, correspondingly. The result of predictions on the 15% full-out cross-validation test also evidenced the robustness and predictive power of the obtained models. In addition, canonical regression analyses corroborated the statistical quality of these models (R(can) of 0.749 and of 0.845, correspondingly); they were also used to compute biological activity canonical scores for each compound. On the other hand, a close inspection of the molecular descriptors included in both equations showed that several of these molecular fingerprints are strongly interrelated with each other. Therefore, these models were orthogonalized using the Randić orthogonalization procedure. These classification functions were then applied to find new lead antitrichomonal agents and six compounds were selected as possible active compounds by computational screening. The designed compounds were synthesized and tested for in vitro activity against T. vaginalis. Out of the six compounds that were designed, and synthesized, three molecules (chemicals VA5-5a, VA5-5c, and VA5-12b) showed high to moderate cytocidal activity at the concentration of 10 microg/ml, other two compounds (VA5-8pre and VA5-8) showed high cytocidal and cytostatic activity at the concentration of 100 microg/ml and 10 microg/ml, correspondingly, and the remaining chemical (compound VA5-5e) was inactive at these assayed concentrations. Nonetheless, these compounds possess structural features not seen in known trichomonacidal compounds and thus can serve as excellent leads for further optimization of antitrichomonal activity. The LDA-based QSAR models presented here can be considered as a computer-assisted system that could potentially significantly reduce the number of synthesized and tested compounds and increase the chance of finding new chemical entities with antitrichomonal activity.
Collapse
Affiliation(s)
- Yovani Marrero-Ponce
- Institut Universitari de Ciència Molecular, Universitat de València, Edifici d'Instituts de Paterna, Poligon la Coma s/n (detras de Canal Nou), PO Box 22085, E-46071 Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Castillo-Garit JA, Marrero-Ponce Y, Torrens F. Atom-based 3D-chiral quadratic indices. Part 2: Prediction of the corticosteroid-binding globulinbinding affinity of the 31 benchmark steroids data set. Bioorg Med Chem 2006; 14:2398-408. [PMID: 16325409 DOI: 10.1016/j.bmc.2005.11.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/09/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
A quantitative structure-activity relationship (QSAR) study to predict the relative affinities of the steroid 'benchmark' data set to the corticosteroid-binding globulin (CBG) is described. It is shown that the 3D-chiral quadratic indices closely correlate with the measured CBG affinity values for the 31 steroids. The calculated descriptors were correlated with biological data through multiple linear regressions. Two statistically significant models were obtained when non-stochastic (R = 0.924 and s = 0.46) as well as stochastic (R = 0.929 and s = 0.46) 3D-chiral quadratic indices were used. A leave-one-out (LOO) approach to model validation is used here; the best results obtained in the cross-validation procedure with non-stochastic (q2 = 0.781) and stochastic (q2 = 0.735) 3D-chiral quadratic indices are better or similar to most of the 3D-QSAR approaches reported so far. These results support the idea that the 3D-chiral quadratic indices may be helpful in prediction of the corticosteroid-binding affinity for new compounds.
Collapse
Affiliation(s)
- Juan A Castillo-Garit
- Applied Chemistry Research Center, Central University of Las Villas, Santa Clara, 54830, Villa Clara, Cuba.
| | | | | |
Collapse
|