1
|
Melse O, Antes I, Kaila VRI, Zacharias M. Benchmarking biomolecular force field-based Zn 2+ for mono- and bimetallic ligand binding sites. J Comput Chem 2023; 44:912-926. [PMID: 36495007 DOI: 10.1002/jcc.27052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Zn2+ is one of the most versatile biologically available metal ions, but accurate modeling of Zn2+ -containing metalloproteins at the biomolecular force field level can be challenging. Since most Zn2+ models are parameterized in bulk solvent, in-depth knowledge about their performance in a protein environment is limited. Thus, we systematically investigate here the behavior of non-polarizable Zn2+ models for their ability to reproduce experimentally determined metal coordination and ligand binding in metalloproteins. The benchmarking is performed in challenging environments, including mono- (carbonic anhydrase II) and bimetallic (metallo-β-lactamase VIM-2) ligand binding sites. We identify key differences in the performance between the Zn2+ models with regard to the preferred ligating atoms (charged/non-charged), attraction of water molecules, and the preferred coordination geometry. Based on these results, we suggest suitable simulation conditions for varying Zn2+ site geometries that could guide the further development of biomolecular Zn2+ models.
Collapse
Affiliation(s)
- Okke Melse
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany.,SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Iris Antes
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany.,SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Zacharias
- Center for Functional Protein Assemblies (CPA), Technical University of Munich, Garching, Germany
| |
Collapse
|
2
|
Melvin RL, Xiao J, Godwin RC, Berenhaut KS, Salsbury FR. Visualizing correlated motion with HDBSCAN clustering. Protein Sci 2018; 27:62-75. [PMID: 28799290 PMCID: PMC5734272 DOI: 10.1002/pro.3268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/22/2022]
Abstract
Correlated motion analysis provides a method for understanding communication between and dynamic similarities of biopolymer residues and domains. The typical equal-time correlation matrices-frequently visualized with pseudo-colorings or heat maps-quickly convey large regions of highly correlated motion but hide more subtle similarities of motion. Here we propose a complementary method for visualizing correlations within proteins (or general biopolymers) that quickly conveys intuition about which residues have a similar dynamic behavior. For grouping residues, we use the recently developed non-parametric clustering algorithm HDBSCAN. Although the method we propose here can be used to group residues using correlation as a similarity matrix-the most straightforward and intuitive method-it can also be used to more generally determine groups of residues which have similar dynamic properties. We term these latter groups "Dynamic Domains", as they are based not on spatial closeness but rather closeness in the column space of a correlation matrix. We provide examples of this method across three human proteins of varying size and function-the Nf-Kappa-Beta essential modulator, the clotting promoter Thrombin and the mismatch repair protein (dimer) complex MutS-alpha. Although the examples presented here are from all-atom molecular dynamics simulations, this visualization technique can also be used on correlations matrices built from any ensembles of conformations from experiment or computation.
Collapse
Affiliation(s)
- Ryan L. Melvin
- Department of PhysicsWake Forest UniversityWinston SalemNorth Carolina
- Department of Mathematics and StatisticsWake Forest UniversityWinston‐SalemNorth Carolina27109
| | - Jiajie Xiao
- Department of PhysicsWake Forest UniversityWinston SalemNorth Carolina
- Department of Computer ScienceWake Forest UniversityWinston‐SalemNorth Carolina27109
| | - Ryan C. Godwin
- Department of PhysicsWake Forest UniversityWinston SalemNorth Carolina
| | - Kenneth S. Berenhaut
- Department of Mathematics and StatisticsWake Forest UniversityWinston‐SalemNorth Carolina27109
| | | |
Collapse
|
3
|
Xiao J, Salsbury FR. Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. J Biomol Struct Dyn 2017; 35:3354-3369. [PMID: 27794633 PMCID: PMC6876308 DOI: 10.1080/07391102.2016.1254682] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/21/2016] [Indexed: 01/11/2023]
Abstract
Thrombin is an attractive target for antithrombotic therapy due to its central role in thrombosis and hemostasis as well as its role in inducing tumor growth, metastasis, and tumor invasion. The thrombin-binding DNA aptamer (TBA), is under investigation for anticoagulant drugs. Although aptamer binding experiments have been revealed various effects on thrombin's enzymatic activities, the detailed picture of the thrombin's allostery from TBA binding is still unclear. To investigate thrombin's response to the aptamer-binding at the molecular level, we compare the mechanical properties and free energy landscapes of the free and aptamer-bound thrombin using microsecond-scale all-atom GPU-based molecular dynamics simulations. Our calculations on residue fluctuations and coupling illustrate the allosteric effects of aptamer-binding at the atomic level, highlighting the exosite II, 60s, γ and the sodium loops, and the alpha helix region in the light chains involved in the allosteric changes. This level of details clarifies the mechanisms of previous experimentally demonstrated phenomena, and provides a prediction of the reduced autolysis rate after aptamer-binding. The shifts in thrombin's ensemble of conformations and free energy surfaces after aptamer-binding demonstrate that the presence of bound-aptamer restricts the conformational freedom of thrombin suggesting that conformational selection, i.e. generalized allostery, is the dominant mechanism of thrombin-aptamer binding. The profound perturbation on thrombin's mechanical and thermodynamic properties due to the aptamer-binding, which was revealed comprehensively as a generalized allostery in this work, may be exploited in further drug discovery and development.
Collapse
Affiliation(s)
- Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | | |
Collapse
|
4
|
Shi P, Qiao P, Zhang Y, Li S, Feng X, Bian L. Spectroscopy analysis and molecular dynamics studies on the binding of penicillin V and sulbactam to beta-lactamase II from Bacillus cereus. J Pharm Biomed Anal 2017; 138:206-214. [PMID: 28219797 DOI: 10.1016/j.jpba.2017.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 11/15/2022]
Abstract
The molecular recognition and interaction of beta-lactamase II from Bacillus cereus (Bc II) with penicillin V (PV) and sulbactam (Sul) especially conformational changes of Bc II in the binding process were studied through spectroscopy analysis in combination with molecular dynamics (MD) simulation. The results show that in the binding process, a new coordination bond is observed between the Zn2 of Bc II and the carboxyl-O of PV or Sul by replacing His204. Electrostatic interaction between Zn2 and the ligand provide main driving force for the binding affinity. Compared with apo Bc II, there are mainly four loops showing significant conformational changes in ligand-bound Bc II. A weak conformational transformation from β-sheets to random coils is observed in the loop2 of ligand-bound Bc II. The conformational transformation may depend on the functional group and binding pose of the ligand, giving the binding pocket greater flexibility and accordingly allowing for an induced fit of the enzyme-ligand binding site around the newly introduced ligand. The change in the loop2 of ligand-bound Bc II may lead to the opening of the binding pocket of Bc II. Therefore, loop2 can be considered a gate for control of ligand access in Bc II, hence its dynamic response should be considered in new drug design and development.
Collapse
Affiliation(s)
- Penghui Shi
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Pan Qiao
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yeli Zhang
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Shuaihua Li
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Xuan Feng
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
5
|
Thirumal Kumar D, George Priya Doss C, Sneha P, Tayubi IA, Siva R, Chakraborty C, Magesh R. Influence of V54M mutation in giant muscle protein titin: a computational screening and molecular dynamics approach. J Biomol Struct Dyn 2016; 35:917-928. [PMID: 27125723 DOI: 10.1080/07391102.2016.1166456] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recent genetic studies have revealed the impact of mutations in associated genes for cardiac sarcomere components leading to dilated cardiomyopathy (DCM). The cardiac sarcomere is composed of thick and thin filaments and a giant muscle protein known as titin or connectin. Titin interacts with T-cap/telethonin in the Z-line region and plays a vital role in regulating sarcomere assembly. Initially, we screened all the variants associated with giant protein titin and analyzed their impact with the aid of pathogenicity and stability prediction methods. V54M mutation found in the hydrophobic core region of the protein associated with abnormal clinical phenotype leads to DCM was selected for further analysis. To address this issue, we mapped the deleterious mutant V54M, modeled the mutant protein complex, and deciphered the impact of mutation on binding with its partner telethonin in the titin crystal structure of PDB ID: 1YA5 with the aid of docking analysis. Furthermore, two run molecular dynamics simulation was initiated to understand the mechanistic action of V54M mutation in altering the protein structure, dynamics, and stability. According to the results obtained from the repeated 50 ns trajectory files, the overall effect of V54M mutation was destabilizing and transition of bend to coil in the secondary structure was observed. Furthermore, MMPBSA elucidated that V54M found in the Z-line region of titin decreases the binding affinity of titin to Z-line proteins T-cap/telethonin thereby hindering the protein-protein interaction.
Collapse
Affiliation(s)
- D Thirumal Kumar
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India
| | - C George Priya Doss
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India
| | - P Sneha
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India
| | - Iftikhar Aslam Tayubi
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India.,b Faculty of Computing and Information Technology , King Abdulaziz University , Rabigh 21911 , Saudi Arabia
| | - R Siva
- a School of Biosciences and Technology , VIT University , Vellore , Tamil Nadu 632014 , India
| | - Chiranjib Chakraborty
- c Department of Bio-informatics , School of Computer and Information Sciences, Galgotias University , Greater Noida , Uttar Pradesh 201306 , India
| | - R Magesh
- d Faculty of Biomedical Sciences, Technology & Research, Department of Biotechnology , Sri Ramachandra University , Chennai , Tamil Nadu 600116 , India
| |
Collapse
|
6
|
Montagner C, Nigen M, Jacquin O, Willet N, Dumoulin M, Karsisiotis AI, Roberts GCK, Damblon C, Redfield C, Matagne A. The Role of Active Site Flexible Loops in Catalysis and of Zinc in Conformational Stability of Bacillus cereus 569/H/9 β-Lactamase. J Biol Chem 2016; 291:16124-37. [PMID: 27235401 DOI: 10.1074/jbc.m116.719005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 11/06/2022] Open
Abstract
Metallo-β-lactamases catalyze the hydrolysis of most β-lactam antibiotics and hence represent a major clinical concern. The development of inhibitors for these enzymes is complicated by the diversity and flexibility of their substrate-binding sites, motivating research into their structure and function. In this study, we examined the conformational properties of the Bacillus cereus β-lactamase II in the presence of chemical denaturants using a variety of biochemical and biophysical techniques. The apoenzyme was found to unfold cooperatively, with a Gibbs free energy of stabilization (ΔG(0)) of 32 ± 2 kJ·mol(-1) For holoBcII, a first non-cooperative transition leads to multiple interconverting native-like states, in which both zinc atoms remain bound in an apparently unaltered active site, and the protein displays a well organized compact hydrophobic core with structural changes confined to the enzyme surface, but with no catalytic activity. Two-dimensional NMR data revealed that the loss of activity occurs concomitantly with perturbations in two loops that border the enzyme active site. A second cooperative transition, corresponding to global unfolding, is observed at higher denaturant concentrations, with ΔG(0) value of 65 ± 1.4 kJ·mol(-1) These combined data highlight the importance of the two zinc ions in maintaining structure as well as a relatively well defined conformation for both active site loops to maintain enzymatic activity.
Collapse
Affiliation(s)
- Caroline Montagner
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Michaël Nigen
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Olivier Jacquin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Nicolas Willet
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Mireille Dumoulin
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| | - Andreas Ioannis Karsisiotis
- the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom
| | - Gordon C K Roberts
- the Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom, and
| | - Christian Damblon
- Département de Chimie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | - Christina Redfield
- the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - André Matagne
- From the Laboratoire d'Enzymologie et Repliement des Protéines, Centre d'Ingénierie des Protéines, and
| |
Collapse
|
7
|
Negureanu L, Salsbury FR. Insights into protein - DNA interactions, stability and allosteric communications: a computational study of mutSα-DNA recognition complexes. J Biomol Struct Dyn 2016; 29:757-76. [PMID: 22208277 DOI: 10.1080/07391102.2012.10507412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA mismatch repair proteins (MMR) maintain genetic stability by recognizing and repairing mismatched bases and insertion/deletion loops mistakenly incorporated during DNA replication, and initiate cellular response to certain types of DNA damage. Loss of MMR in mammalian cells has been linked to resistance to certain DNA damaging chemotherapeutic agents, as well as to increase risk of cancer. Mismatch repair pathway is considered to involve the concerted action of at least 20 proteins. The most abundant MMR mismatch-binding factor in eukaryotes, MutSα, recognizes and initiates the repair of base-base mismatches and small insertion/deletion. We performed molecular dynamics simulations on mismatched and damaged MutSα-DNA complexes. A comprehensive DNA binding site analysis of relevant conformations shows that MutSα proteins recognize the mismatched and platinum cross-linked DNA substrates in significantly different modes. Distinctive conformational changes associated with MutSα binding to mismatched and damaged DNA have been identified and they provide insight into the involvement of MMR proteins in DNA-repair and DNA-damage pathways. Stability and allosteric interactions at the heterodimer interface associated with the mismatch and damage recognition step allow for prediction of key residues in MMR cancer-causing mutations. A rigorous hydrogen bonding analysis for ADP molecules at the ATPase binding sites is also presented. Due to extended number of known MMR cancer causing mutations among the residues proved to make specific contacts with ADP molecules, recommendations for further studies on similar mutagenic effects were made.
Collapse
|
8
|
Lu Y, Salsbury FR. Recapturing the Correlated Motions of Protein Using Coarse- Grained Models. Protein Pept Lett 2016; 22:654-9. [PMID: 26100687 DOI: 10.2174/0929866522666150511150332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/24/2015] [Accepted: 05/07/2015] [Indexed: 11/22/2022]
Abstract
Long-range interactions and allostery are important for many biological processes. Increasing numbers of studies, both experimental and computational, show that internal dynamics may play an important role in such behaviors. Investigating the dynamical effects of proteins, how- ever, is a challenging problem using all-atom molecular dynamics because of the length-scales and timescales involved. As a result, coarse-grained models are often implemented. Herein, we use three well-defined coarse-grained models: Go, Martini and Cafemol, and a small model protein Eglin C, which is readily studied via all-atom molecular dynamics, to examine if these coarse grained models can explore the dynamics of Eglin C accurately as well as to see how these models respond to mutations. We found that all three models can recapture the dynamics of Eglin C to a significant extent - where we focus on root-mean square fluctuations and correlated motions as dynamical measures - but that the Cafemol and Go models are superior. The best agreement with all-atom simulations is for structured regions of Eglin C.
Collapse
Affiliation(s)
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC 27106, USA.
| |
Collapse
|
9
|
González MM, Vila AJ. An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Dalle KE, Meyer F. Modelling Binuclear Metallobiosites: Insights from Pyrazole-Supported Biomimetic and Bioinspired Complexes. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500185] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Godwin RC, Melvin R, Salsbury FR. Molecular Dynamics Simulations and Computer-Aided Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2015. [DOI: 10.1007/7653_2015_41] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
|
13
|
Karsisiotis AI, Damblon CF, Roberts GCK. A variety of roles for versatile zinc in metallo-β-lactamases. Metallomics 2014; 6:1181-97. [DOI: 10.1039/c4mt00066h] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Lactamases inactivate the important β-lactam antibiotics by catalysing the hydrolysis of the β-lactam ring, thus. One class of these enzymes, the metallo-β-lactamases, bind two zinc ions at the active site and these play important roles in the catalytic mechanism.
Collapse
Affiliation(s)
| | - C. F. Damblon
- Chimie Biologique Structurale
- Institut de Chimie
- Université de Liège
- 4000 Liège, Belgium
| | - G. C. K. Roberts
- The Henry Wellcome Laboratories of Structural Biology
- Department of Biochemistry
- University of Leicester
- Leicester LE1 9HN, UK
| |
Collapse
|
14
|
Chen J, Chen H, Shi Y, Hu F, Lao X, Gao X, Zheng H, Yao W. Probing the effect of the non-active-site mutation Y229W in New Delhi metallo-β-lactamase-1 by site-directed mutagenesis, kinetic studies, and molecular dynamics simulations. PLoS One 2013; 8:e82080. [PMID: 24339993 PMCID: PMC3858288 DOI: 10.1371/journal.pone.0082080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/29/2013] [Indexed: 12/03/2022] Open
Abstract
New Delhi metallo-β-lactmase-1 (NDM-1) has attracted extensive attention for its high catalytic activities of hydrolyzing almost all β-lactam antibiotics. NDM-1 shows relatively higher similarity to subclass B1 metallo-β-lactmases (MβLs), but its residue at position 229 is identical to that of B2/B3 MβLs, which is a Tyr instead of a B1-MβL-conserved Trp. To elucidate the possible role of Y229 in the bioactivity of NDM-1, we performed mutagenesis study and molecular dynamics (MD) simulations. Although residue Y229 is spatially distant from the active site and not contacting directly with the substrate or zinc ions, the Y229W mutant was found to have higher kcat and Km values than those of wild-type NDM-1, resulting in 1∼7 fold increases in kcat/Km values against tested antibiotics. In addition, our MD simulations illustrated the enhanced flexibility of Loop 2 upon Y229W mutation, which could increase the kinetics of both substrate entrance (kon) and product egress (koff). The enhanced flexibility of Loop 2 might allow the enzyme to adjust the geometry of its active site to accommodate substrates with different structures, broadening its substrate spectrum. This study indicated the possible role of the residue at position 229 in the evolution of NDM-1.
Collapse
Affiliation(s)
- Jiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hui Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yun Shi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Feng Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xingzhen Lao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiangdong Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
- * E-mail: (HZ); (WY)
| | - Wenbing Yao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
- * E-mail: (HZ); (WY)
| |
Collapse
|
15
|
Negureanu L, Salsbury FR. Destabilization of the MutSα's protein-protein interface due to binding to the DNA adduct induced by anticancer agent carboplatin via molecular dynamics simulations. J Mol Model 2013; 19:4969-89. [PMID: 24061854 DOI: 10.1007/s00894-013-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
DNA mismatch repair (MMR) proteins maintain genetic integrity in all organisms by recognizing and repairing DNA errors. Such alteration of hereditary information can lead to various diseases, including cancer. Besides their role in DNA repair, MMR proteins detect and initiate cellular responses to certain type of DNA damage. Its response to the damaged DNA has made the human MMR pathway a useful target for anticancer agents such as carboplatin. This study indicates that strong, specific interactions at the interface of MutSα in response to the mismatched DNA recognition are replaced by weak, non-specific interactions in response to the damaged DNA recognition. Data suggest a severe impairment of the dimerization of MutSα in response to the damaged DNA recognition. While the core of MutSα is preserved in response to the damaged DNA recognition, the loss of contact surface and the rearrangement of contacts at the protein interface suggest a different packing in response to the damaged DNA recognition. Coupled in response to the mismatched DNA recognition, interaction energies, hydrogen bonds, salt bridges, and solvent accessible surface areas at the interface of MutSα and within the subunits are uncoupled or asynchronously coupled in response to the damaged DNA recognition. These pieces of evidence suggest that the loss of a synchronous mode of response in the MutSα's surveillance for DNA errors would possibly be one of the mechanism(s) of signaling the MMR-dependent programed cell death much wanted in anticancer therapies. The analysis was drawn from dynamics simulations.
Collapse
|
16
|
Negureanu L, Salsbury FR. Non-specificity and synergy at the binding site of the carboplatin-induced DNA adduct via molecular dynamics simulations of the MutSα-DNA recognition complex. J Biomol Struct Dyn 2013; 32:969-92. [PMID: 23799640 DOI: 10.1080/07391102.2013.799437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
MutSα is the most abundant mismatch-binding factor of human DNA mismatch repair (MMR) proteins. MMR maintains genetic stability by recognizing and repairing DNA defects. Failure to accomplish their function may lead to cancer. In addition, MutSα recognizes at least some types of DNA damage making it a target for anticancer agents. Here, complementing scarce experimental data, we report unique hydrogen-bonding motifs associated with the recognition of the carboplatin induced DNA damage by MutSα. These data predict that carboplatin and cisplatin induced damaging DNA adducts are recognized by MutSα in a similar manner. Our simulations also indicate that loss of base pairing at the damage site results in (1) non-specific binding and (2) changes in the atomic flexibility at the lesion site and beyond. To further quantify alterations at MutSα-DNA interface in response to damage recognition, non-bonding interactions and salt bridges were investigated. These data indicate (1) possible different packing and (2) disruption of the salt bridges at the MutSα-DNA interface in the damaged complex. These findings (1) underscore the general observation of disruptions at the MutSα-DNA interface and (2) highlight the nature of the anticancer effect of the carboplatin agent. The analysis was carried out from atomistic simulations.
Collapse
|
17
|
C GPD, Rajith B, Chakraborty C. Predicting the impact of deleterious mutations in the protein kinase domain of FGFR2 in the context of function, structure, and pathogenesis--a bioinformatics approach. Appl Biochem Biotechnol 2013; 170:1853-70. [PMID: 23754559 DOI: 10.1007/s12010-013-0315-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/27/2013] [Indexed: 11/26/2022]
Abstract
Fibroblast growth factor receptor 2 (FGFR2) controls a wide range of biological functions by regulating the cellular proliferation, survival, migration and differentiation. A growing body of preclinical data demonstrated that deregulation of the FGFR signalling through genetic modification was observed in various types of cancers. However, the extent to which genetic modifications interfere with gene regulation and their involvement in cancer susceptibility remains largely unknown. In this work, we performed in silico profiling of harmful non-synonymous single nucleotide polymorphisms (SNPs) in the protein kinase domain of FGFR2. Tolerance index, position-specific independent count score, change in free energy score (ΔΔG), Eris and FoldX indicated that seven mutations were found to be deleterious and may alter the protein function and structure. Furthermore, based on physico-chemical properties, two mutations K659N and R747H were found to be most deleterious in protein kinase domain and taken for further structural analysis. Docking study showed a complete loss of binding affinity followed by interference in hydrogen bonding and surrounding residues due to K659N and R747H mutations. In order to elucidate the mechanism behind the impact of mutation that can generate a ripple effect throughout the protein structure and ultimately affect the function, in-depth molecular dynamics simulation and principal component analysis were performed. The obtained results indicate that K659N and R747H mutations have a distinct effect on the dynamic behaviour of FGFR2 protein. Our strategy may be helpful for understanding SNP effects on proteins with function and their role in human genetic diseases and for the development of novel pharmacological strategies.
Collapse
Affiliation(s)
- George Priya Doss C
- Medical Biotechnology Division, School of Biosciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India.
| | | | | |
Collapse
|
18
|
Abstract
MβL (metallo-β-lactamase) enzymes are usually produced by multi-resistant Gram-negative bacterial strains and have spread worldwide. An approach on the basis of phage display was used to select single-domain antibody fragments (VHHs, also called nanobodies) that would inhibit the clinically relevant VIM (Verona integron-encoded MβL)-4 MβL. Out of more than 50 selected nanobodies, only the NbVIM_38 nanobody inhibited VIM-4. The paratope, inhibition mechanism and epitope of the NbVIM_38 nanobody were then characterized. An alanine scan of the NbVIM_38 paratope showed that its binding was driven by hydrophobic amino acids. The inhibitory concentration was in the micromolar range for all β-lactams tested. In addition, the inhibition was found to follow a mixed hyperbolic profile with a predominantly uncompetitive component. Moreover, substrate inhibition was recorded only after nanobody binding. These kinetic data are indicative of a binding site that is distant from the active site. This finding was confirmed by epitope mapping analysis that was performed using peptides, and which identified two stretches of amino acids in the L6 loop and at the end of the α2 helix. Because this binding site is distant from the active site and alters both the substrate binding and catalytic properties of VIM-4, this nanobody can be considered as an allosteric inhibitor.
Collapse
|
19
|
Negureanu L, Salsbury FR. The molecular origin of the MMR-dependent apoptosis pathway from dynamics analysis of MutSα-DNA complexes. J Biomol Struct Dyn 2012; 30:347-61. [PMID: 22712459 PMCID: PMC3389999 DOI: 10.1080/07391102.2012.680034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cellular response to DNA damage signaling by mismatch-repair (MMR) proteins is incompletely understood. It is generally accepted that MMR-dependent apoptosis pathway in response to DNA damage detection is independent of MMR's DNA repair function. In this study, we investigate correlated motions in response to the binding of mismatched and platinum cross-linked DNA fragments by MutSα, as derived from 50 ns molecular dynamics simulations. The protein dynamics in response to the mismatched and damaged DNA recognition suggests that MutSα signals their recognition through independent pathways providing evidence for the molecular origin of the MMR-dependent apoptosis. MSH2 subunit is indicated to play a key role in signaling both mismatched and damaged DNA recognition; localized and collective motions within the protein allow identifying sites on the MSH2 surface possible involved in recruiting proteins responsible for downstream events. Unlike in the mismatch complex, predicted key communication sites specific for the damage recognition are on the list of known cancer-causing mutations or deletions. This confirms MSH2's role in signaling DNA damage-induced apoptosis and suggests that defects in MMR alone is sufficient to trigger tumorigenesis, supporting the experimental evidence that MMR-damage response function could protect from the early occurrence of tumors. Identifying these particular communication sites may have implications for the treatment of cancers that are not defective for MMR, but are unable to function optimally for MMR-dependent responses following DNA damage such as the case of resistance to cisplatin.
Collapse
|
20
|
Gmeiner WH, Salsbury F, Olsen CM, Marky LA. The stability of a model substrate for topoisomerase 1-mediated DNA religation depends on the presence of mismatched base pairs. J Nucleic Acids 2011; 2011:631372. [PMID: 21904666 PMCID: PMC3166759 DOI: 10.4061/2011/631372] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/07/2011] [Accepted: 06/11/2011] [Indexed: 12/20/2022] Open
Abstract
Topoisomerase 1 (Top1) enzymes regulate DNA superhelicity by forming covalent cleavage complexes that undergo controlled rotation. Substitution of nucleoside analogs at the +1 position of the DNA duplex relative to the Top1 cleavage site inhibits DNA religation. The reduced efficiency for Top1-mediated religation contributes to the anticancer activity of widely used anticancer drugs including fluoropyrimidines and gemcitabine. In the present study, we report that mismatched base pairs at the +1 position destabilize the duplex DNA components for a model Top1 cleavage complex formation even though one duplex component does not directly include a mismatched base pair. Molecular dynamics simulations reveal G-dU and G-FdU mismatched base pairs, but not a G-T mismatched base pair, increase flexibility at the Top1 cleavage site, and affect coupling between the regions required for the religation reaction to occur. These results demonstrate that substitution of dT analogs into the +1 position of the non-scissile strand alters the stability and flexibility of DNA contributing to the reduced efficiency for Top1-mediated DNA religation. These effects are inherent in the DNA duplex and do not require formation of the Top1:DNA complex. These results provide a biophysical rationale for the inhibition of Top1-mediated DNA religation by nucleotide analog substitution.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
21
|
Salsbury FR. Molecular dynamics simulations of protein dynamics and their relevance to drug discovery. Curr Opin Pharmacol 2011; 10:738-44. [PMID: 20971684 DOI: 10.1016/j.coph.2010.09.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 09/29/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022]
Abstract
Molecular dynamics simulations have become increasingly useful in studying biological systems of biomedical interest, and not just in the study of model or toy systems. In this article, the methods and principles of all-atom molecular dynamics will be elucidated with several examples provided of their utility to investigators interested on drug discovery.
Collapse
Affiliation(s)
- Freddie R Salsbury
- Department of Physics, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27106, USA.
| |
Collapse
|
22
|
Ferreira DP, Silva VL, Guimarães DA, Coelho CM, Zauli DAG, Farias LM, Carvalho MAR, Diniz CG. Distribution, detection of enterotoxigenic strains and antimicrobial drug susceptibility patterns of bacteroides fragilis group in diarrheic and non-diarrheic feces from brazilian infants. Braz J Microbiol 2010; 41:603-11. [PMID: 24031535 PMCID: PMC3768645 DOI: 10.1590/s1517-83822010000300010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/14/2009] [Accepted: 03/16/2010] [Indexed: 12/13/2022] Open
Abstract
Despite the importance of gastrointestinal diseases and their global distribution, affecting millions of individuals around the world, the role and antimicrobial susceptibility patterns of anaerobic bacteria such as those in the Bacteroides fragilis group (BFG) are still unclear in young children. This study investigated the occurrence and distribution of species in the BFG and enterotoxigenic strains in the fecal microbiota of children and their antimicrobial susceptibility patterns. Diarrheic (n=110) and non-diarrheic (n=65) fecal samples from children aged 0-5 years old were evaluated. BFG strains were isolated and identified by conventional biochemical, physiological and molecular approaches. Alternatively, bacteria and enterotoxigenic strains were detected directly from feces by molecular biology. Antimicrobial drug susceptibility patterns were determined by the agar dilution method according to the guidelines for isolated bacteria. BFG was detected in 64.3% of the fecal samples (55% diarrheic and 80.4% non-diarrheic), and 4.6% were enterotoxigenic. Antimicrobial resistance was observed against ampicillin, ampicillin/sulbactam, piperacillin/tazobactam, meropenem, ceftriaxone, clindamycin and chloramphenicol. The data show that these bacteria are prevalent in fecal microbiota at higher levels in healthy children. The molecular methodology was more effective in identifying the B. fragilis group when compared to the biochemical and physiological techniques. The observation of high resistance levels stimulates thoughts about the indiscriminate use of antimicrobial drugs in early infancy. Further quantitative studies are needed to gain a better understanding of the role of these bacteria in acute diarrhea in children.
Collapse
Affiliation(s)
- Débora Paula Ferreira
- Laboratório de Fisiologia e Genética Molecular Bacteriana, Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Juiz de Fora, Juiz de Fora, MG , Brasil
| | | | | | | | | | | | | | | |
Collapse
|