1
|
Faraji N, Daly NL, Arab SS, Khosroushahi AY. In silico design of potential Mcl-1 peptide-based inhibitors. J Mol Model 2024; 30:108. [PMID: 38499818 DOI: 10.1007/s00894-024-05901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
CONTEXT BIM (Bcl-2 interacting mediator of apoptosis)-derived peptides that specifically target over-expressed Mcl-1 (myeloid cell leukemia-1) protein and induce apoptosis are potentially anti-cancer agents. Since the helicity of BIM-derived peptides has a crucial role in their functionality, a range of strategies have been used to increase the helicity including the introduction of unnatural residues and stapling methods that have some drawbacks such as the accumulation in the liver. To avoid these drawbacks, this study aimed to design a more helical peptide by utilizing bioinformatics algorithms and molecular dynamics simulations without exploiting unnatural residues and stapling methods. MM-PBSA results showed that the mutations of A4fE and A2eE in analogue 5 demonstrate a preference towards binding with Mcl-1. As evidenced by Circular dichroism results, the helicity increases from 18 to 34%, these findings could enhance the potential of analogue 5 as an anti-cancer agent targeting Mcl-1. The applied strategies in this research could shed light on the in silico peptide design. Moreover, analogue 5 as a drug candidate can be evaluated in vitro and in vivo studies. METHODS The sequence of the lead peptide was determined using the ApInAPDB database and PRALINE program. Contact finder and PDBsum web server softwares were used to determine the contact involved amino acids in complex with Mcl-1. All identified salt bridge contributing residues were unaltered to preserve the binding affinity. After proposing novel analogues, their secondary structures were predicted by Cham finder web server software and GOR, Neural Network, and Chou-Fasman algorithms. Finally, molecular dynamics simulations run for 100 ns were done using the GROMACS, version 5.0.7, with the CHARMM36 force field. MM-PBSA was used to assess binding affinity specificity in targeting Mcl-1 and Bcl-xL (B-cell lymphoma extra-large).
Collapse
Affiliation(s)
- Naser Faraji
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Norelle L Daly
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4870, Australia
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Daneshgah Street, Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Ntarakas N, Ermilova I, Lyubartsev AP. Effect of lipid saturation on amyloid-beta peptide partitioning and aggregation in neuronal membranes: molecular dynamics simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:813-824. [PMID: 31655893 PMCID: PMC6853862 DOI: 10.1007/s00249-019-01407-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/02/2019] [Accepted: 10/13/2019] [Indexed: 12/05/2022]
Abstract
Aggregation of amyloid-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β (Aβ) peptides, cleaved from the amyloid precursor protein, is known as a precursor of the Alzheimer’s disease (AD). It is also known that Alzheimer’s disease is characterized by a substantial decrease of the amount of polyunsaturated lipids in the neuronal membranes of the frontal gray matter. To get insight into possible interconnection of these phenomena, we have carried out molecular dynamics simulations of two fragments of A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β peptide, A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{1-28}$$\end{document}1-28 and A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{26-40}$$\end{document}26-40, in four different lipid bilayers: two monocomponent ones (14:0-14:0 PC, 18:0-22:6 PC), and two bilayers containing mixtures of 18:0-18:0 PE, 22:6-22:6 PE, 16:0-16:0 PC and 18:1-18:1 PC lipids of composition mimicking neuronal membranes in a “healthy” and “AD” brain. The simulations showed that the presence of lipids with highly unsaturated 22:6cis fatty acids chains strongly affects the interaction of amyloid-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β peptides with lipid membranes. The polyunsaturated lipids cause stronger adsorption of A\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\beta $$\end{document}β-peptides by the membrane and lead to weaker binding between peptides when the latter form aggregates. This difference in the behaviour observed in monocomponent bilayers is propagated in a similar fashion to the mixed membranes mimicking composition of neuronal membranes in “healthy” and “AD” brains, with “healthy” membrane having higher fraction of polyunsaturated lipids. Our simulations give strong indication that it can be physical–chemical background of the interconnection between amyloid fibrillization causing Alzheimer’s disease, and content of polyunsaturated lipids in the neuronal membranes.
Collapse
Affiliation(s)
- Nikolaos Ntarakas
- Department of Materials and Environmental Chemistry, Stockholm's University, 10691, Stockholm, Sweden
| | - Inna Ermilova
- Department of Materials and Environmental Chemistry, Stockholm's University, 10691, Stockholm, Sweden
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm's University, 10691, Stockholm, Sweden.
| |
Collapse
|
3
|
Amin ND, Zheng Y, Bk B, Shukla V, Skuntz S, Grant P, Steiner J, Bhaskar M, Pant HC. The interaction of Munc 18 (p67) with the p10 domain of p35 protects in vivo Cdk5/p35 activity from inhibition by TFP5, a peptide derived from p35. Mol Biol Cell 2016; 27:3221-3232. [PMID: 27630261 PMCID: PMC5170856 DOI: 10.1091/mbc.e15-12-0857] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/07/2016] [Indexed: 11/11/2022] Open
Abstract
In a series of studies, we have identified TFP5, a truncated fragment of p35, the Cdk5 kinase regulatory protein, which inhibits Cdk5/p35 and the hyperactive Cdk5/p25 activities in test tube experiments. In cortical neurons, however, and in vivo in Alzheimer's disease (AD) model mice, the peptide specifically inhibits the Cdk5/p25 complex and not the endogenous Cdk5/p35. To account for the selective inhibition of Cdk5/p25 activity, we propose that the "p10" N-terminal domain of p35, absent in p25, spares Cdk5/p35 because p10 binds to macromolecules (e.g., tubulin and actin) as a membrane-bound multimeric complex that favors p35 binding to Cdk5 and catalysis. To test this hypothesis, we focused on Munc 18, a key synapse-associated neuronal protein, one of many proteins copurifying with Cdk5/p35 in membrane-bound multimeric complexes. Here we show that, in vitro, the addition of p67 protects Cdk5/p35 and has no effect on Cdk5/p25 activity in the presence of TFP5. In cortical neurons transfected with p67siRNA, we also show that TFP5 inhibits Cdk5/p35 activity, whereas in the presence of p67 the activity is protected. It does so without affecting any other kinases of the Cdk family of cyclin kinases. This difference may be of significant therapeutic value because the accumulation of the deregulated, hyperactive Cdk5/p25 complex in human brains has been implicated in pathology of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Niranjana D Amin
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Yali Zheng
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Binukumar Bk
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Varsha Shukla
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Susan Skuntz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip Grant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Joseph Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Manju Bhaskar
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Harish C Pant
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
4
|
Dhendup T, Tshering P. Cervical cancer knowledge and screening behaviors among female university graduates of year 2012 attending national graduate orientation program, Bhutan. BMC Womens Health 2014; 14:44. [PMID: 24618416 PMCID: PMC3975232 DOI: 10.1186/1472-6874-14-44] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/04/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cervical cancer is the leading female cancer in Bhutan. This study describes the level of cervical cancer knowledge and screening behaviors among female university graduates attending the National Graduate Orientation Program (NGOP), 2012. METHODS A cross-sectional study of female graduates attending NGOP was conducted using self-administered anonymous questionnaire developed through literature reviews and expert discussions to elicit information on demographic characteristics, knowledge, screening behaviors and determinants of cervical cancer. The association of demographic and other important study characteristics with uptake of Pap test was investigated using cross tabulation and Fischer Exact test. Frequencies and percentages were calculated for all the questions. RESULTS The average age of the participants was 23.43 ± SD 2.73. About 92% (n = 513) of the respondents were aged 25 years or less and 7.9% (n = 44) of the respondents were aged 26 or more. The study revealed low cervical cancer knowledge and poor screening behavior among the graduates. The mean knowledge score was 3.571 (SD1.75, Range 0-8). About 6% (n=34) of the respondents reported undergoing Pap test at least once and 94% reported as never having done Pap test. The most commonly cited reasons for not doing Pap test included "never thought I needed one" (57%, n = 320), "embarrassment of being examined by male health professional" and "fear of finding out cancer". The study revealed evidence of significant association between increasing age, those who are married, knowledge score and those recommended for screening by health professionals with the uptake of Pap test. CONCLUSION Our study revealed poor knowledge and screening behaviors among female university graduates in Bhutan. This may be suggestive of even poorer awareness and screening practices among young unmarried women who are less educated or with no education. Although our study group is not appropriate for measuring practice of cervical cancer screening in the country, the findings are expected to highlight the shortcomings and trigger development of comprehensive cervical cancer control programs in Bhutan.
Collapse
Affiliation(s)
- Tshering Dhendup
- Head, Health Research and Epidemiology Unit, Planning and Policy Division, Ministry of Heath, Kawangjangsa, Thimphu, Bhutan
| | - Pandup Tshering
- Bhutan Medical and Health Council, Ministry of Health, Kawangjangsa, Thimphu, Bhutan
| |
Collapse
|
5
|
Gu Y, Wang W, Zhu X, Dong K. Molecular dynamic simulations reveal the mechanism of binding between xanthine inhibitors and DPP-4. J Mol Model 2014; 20:2075. [PMID: 24481594 DOI: 10.1007/s00894-014-2075-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/12/2013] [Indexed: 11/24/2022]
Abstract
We apply molecular docking, molecular dynamics (MD) simulation, and binding free energy calculation to investigate and reveal the binding mechanism between five xanthine inhibitors and DPP-4. The electrostatic and van der Waals interactions of the five inhibitors with DPP-4 are analyzed and discussed. The computed binding free energies using MM-PBSA method are in qualitatively agreement with experimental inhibitory potency of five inhibitors. The hydrogen bonds of inhibitors with Ser630 and Asp663 can stabilize the inhibitors in binding sites. The van der Waals interactions, especially the key contacts with His740, Asn710, Trp629, and Tyr666 have larger contributions to the binding free energy and play important roles in distinguishing the variant bioactivity of five inhibitors.
Collapse
Affiliation(s)
- Yongliang Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, China
| | | | | | | |
Collapse
|
6
|
Wang W, Cao X, Zhu X, Gu Y. Molecular dynamic simulations give insight into the mechanism of binding between 2-aminothiazole inhibitors and CDK5. J Mol Model 2013; 19:2635-45. [PMID: 23525963 DOI: 10.1007/s00894-013-1815-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 03/04/2013] [Indexed: 12/20/2022]
Abstract
Molecular docking, molecular dynamics (MD) simulations, and binding free energy analysis were performed to reveal differences in the binding affinities between five 2-aminothiazole inhibitors and CDK5. The hydrogen bonding and hydrophobic interactions between inhibitors and adjacent residues are analyzed and discussed. The rank of calculated binding free energies using the MM-PBSA method is consistent with experimental result. The results illustrate that hydrogen bonds with Cys83 favor inhibitor binding. The van der Waals interactions, especially the important contact with Ile10, dominate in the binding free energy and play a crucial role in distinguishing the different bioactivity of the five inhibitors.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
| | | | | | | |
Collapse
|
7
|
Pitchuanchom S, Boonyarat C, Forli S, Olson AJ, Yenjai C. Cyclin-dependent kinases 5 template: useful for virtual screening. Comput Biol Med 2011; 42:106-11. [PMID: 22079569 DOI: 10.1016/j.compbiomed.2011.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/09/2011] [Accepted: 10/27/2011] [Indexed: 11/16/2022]
Abstract
The present study reports the development of a template for the active binding site of Cdk5 for structure-based drug design. The developed template of Cdk5 was validated by redocking with ligands I (PBD code 1UNG), II (PBD code 1UNL) and III (PBD code 1UNH). The results demonstrate a good match of the docked and the crystallographic binding orientations with RMSD less than 2.0Å. The validation results show that the constructed Cdk5 template is a good model system for predicting ligand binding orientations and binding affinities. Furthermore, the developed template was applied to predict binding mode and binding affinity of thirty-six known Cdk5 inhibitors. The results showed that the binding energy of almost Cdk5 inhibitors related to their biological evaluation.
Collapse
Affiliation(s)
- Siripit Pitchuanchom
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | |
Collapse
|
8
|
Corbel C, Wang Q, Bousserouel H, Hamdi A, Zhang B, Lozach O, Ferandin Y, Tan VBC, Guéritte F, Colas P, Couturier C, Bach S. First BRET-based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Biotechnol J 2011; 6:860-70. [PMID: 21681968 DOI: 10.1002/biot.201100138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/07/2011] [Accepted: 04/29/2011] [Indexed: 11/06/2022]
Abstract
The protein kinase CDK5 (cyclin-dependent kinase 5) is activated through its association with a cyclin-like protein p35 or p39. In pathological conditions (such as Alzheimer's disease and various other neuropathies), truncation of p35 leads to the appearance of the p25 protein. The interaction of p25 with CDK5 up-regulates the kinase activity and modifies the substrate specificity. ATP-mimetic inhibitors of CDK5 have already been developed. However, the lack of selectivity of such inhibitors is often a matter of concern. An alternative approach can be used to identify highly specific inhibitors that disrupt protein interactions involving protein kinases. We have developed a bioluminescence resonance energy transfer (BRET)-based screening assay in yeast to discover protein-protein interaction inhibitors (P2I2). Here, we present the first use of BRET in yeast for the screening of small molecule libraries. This screening campaign led to the discovery of one molecule that prevents the interaction between CDK5 and p25, thus inhibiting the protein kinase activity. This molecule may give rise to high-specificity drug candidates.
Collapse
Affiliation(s)
- Caroline Corbel
- CNRS USR 3151, Protein Phosphorylation and Disease Laboratory, Protein-Protein Interaction Inhibition P2I2 Group, Station Biologique, Roscoff, Bretagne, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cardone A, Hassan SA, Albers RW, Sriram RD, Pant HC. Structural and dynamic determinants of ligand binding and regulation of cyclin-dependent kinase 5 by pathological activator p25 and inhibitory peptide CIP. J Mol Biol 2010; 401:478-92. [PMID: 20599546 PMCID: PMC2919306 DOI: 10.1016/j.jmb.2010.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/16/2010] [Accepted: 06/21/2010] [Indexed: 11/15/2022]
Abstract
The crystal structure of the cdk5/p25 complex has provided information on possible molecular mechanisms of the ligand binding, specificity, and regulation of the kinase. Comparative molecular dynamics simulations are reported here for physiological conditions. This study provides new insight on the mechanisms that modulate such processes, which may be exploited to control pathological activation by p25. The structural changes observed in the kinase are stabilized by a network of interactions involving highly conserved residues within the cyclin-dependent kinase (cdk) family. Collective motions of the proteins (cdk5, p25, and CIP) and their complexes are identified by principal component analysis, revealing two conformational states of the activation loop upon p25 complexation, which are absent in the uncomplexed kinase and not apparent from the crystal. Simulations of the uncomplexed inhibitor CIP show structural rearrangements and increased flexibility of the interfacial loop containing the critical residue E240, which becomes fully hydrated and available for interactions with one of several positively charged residues in the kinase. These changes provide a rationale for the observed high affinity and enhanced inhibitory action of CIP when compared to either p25 or the physiological activators of cdk5.
Collapse
Affiliation(s)
- A Cardone
- Information Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | | | | | | | |
Collapse
|