1
|
Vijayakumar S, Kumar LL, Borkotoky S, Murali A. The Application of MD Simulation to Lead Identification, Vaccine Design, and Structural Studies in Combat against Leishmaniasis - A Review. Mini Rev Med Chem 2024; 24:1089-1111. [PMID: 37680156 DOI: 10.2174/1389557523666230901105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 09/09/2023]
Abstract
Drug discovery, vaccine design, and protein interaction studies are rapidly moving toward the routine use of molecular dynamics simulations (MDS) and related methods. As a result of MDS, it is possible to gain insights into the dynamics and function of identified drug targets, antibody-antigen interactions, potential vaccine candidates, intrinsically disordered proteins, and essential proteins. The MDS appears to be used in all possible ways in combating diseases such as cancer, however, it has not been well documented as to how effectively it is applied to infectious diseases such as Leishmaniasis. As a result, this review aims to survey the application of MDS in combating leishmaniasis. We have systematically collected articles that illustrate the implementation of MDS in drug discovery, vaccine development, and structural studies related to Leishmaniasis. Of all the articles reviewed, we identified that only a limited number of studies focused on the development of vaccines against Leishmaniasis through MDS. Also, the PCA and FEL studies were not carried out in most of the studies. These two were globally accepted utilities to understand the conformational changes and hence it is recommended that this analysis should be taken up in similar approaches in the future.
Collapse
Affiliation(s)
| | | | - Subhomoi Borkotoky
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
2
|
Muñoz-Vega MC, López-Hernández S, Sierra-Chavarro A, Scotti MT, Scotti L, Coy-Barrera E, Herrera-Acevedo C. Machine-Learning- and Structure-Based Virtual Screening for Selecting Cinnamic Acid Derivatives as Leishmania major DHFR-TS Inhibitors. Molecules 2023; 29:179. [PMID: 38202763 PMCID: PMC10779987 DOI: 10.3390/molecules29010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The critical enzyme dihydrofolate reductase-thymidylate synthase in Leishmania major (LmDHFR-TS) serves a dual-purpose role and is essential for DNA synthesis, a cornerstone of the parasite's reproductive processes. Consequently, the development of inhibitors against LmDHFR-TS is crucial for the creation of novel anti-Leishmania chemotherapies. In this study, we employed an in-house database containing 314 secondary metabolites derived from cinnamic acid that occurred in the Asteraceae family. We conducted a combined ligand/structure-based virtual screening to identify potential inhibitors against LmDHFR-TS. Through consensus analysis of both approaches, we identified three compounds, i.e., lithospermic acid (237), diarctigenin (306), and isolappaol A (308), that exhibited a high probability of being inhibitors according to both approaches and were consequently classified as promising hits. Subsequently, we expanded the binding mode examination of these compounds within the active site of the test enzyme through molecular dynamics simulations, revealing a high degree of structural stability and minimal fluctuations in its tertiary structure. The in silico predictions were then validated through in vitro assays to examine the inhibitory capacity of the top-ranked naturally occurring compounds against LmDHFR-TS recombinant protein. The test compounds effectively inhibited the enzyme with IC50 values ranging from 6.1 to 10.1 μM. In contrast, other common cinnamic acid derivatives (i.e., flavonoid glycosides) from the Asteraceae family, such as hesperidin, isovitexin 4'-O-glucoside, and rutin, exhibited low activity against this target. The selective index (SI) for all tested compounds was determined using HsDHFR with moderate inhibitory effect. Among these hits, lignans 306 and 308 demonstrated the highest selectivity, displaying superior SI values compared to methotrexate, the reference inhibitor of DHFR-TS. Therefore, continued research into the anti-leishmanial potential of these C6C3-hybrid butyrolactone lignans may offer a brighter outlook for combating this neglected tropical disease.
Collapse
Affiliation(s)
- Maria Camila Muñoz-Vega
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química Universidad del Valle, Cali 760042, Colombia
| | - Sofía López-Hernández
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
| | - Adrián Sierra-Chavarro
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Chonny Herrera-Acevedo
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| |
Collapse
|
3
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
4
|
Soni M, Pratap JV. Development of Novel Anti-Leishmanials: The Case for Structure-Based Approaches. Pathogens 2022; 11:pathogens11080950. [PMID: 36015070 PMCID: PMC9414883 DOI: 10.3390/pathogens11080950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
The neglected tropical disease (NTD) leishmaniasis is the collective name given to a diverse group of illnesses caused by ~20 species belonging to the genus Leishmania, a majority of which are vector borne and associated with complex life cycles that cause immense health, social, and economic burdens locally, but individually are not a major global health priority. Therapeutic approaches against leishmaniasis have various inadequacies including drug resistance and a lack of effective control and eradication of the disease spread. Therefore, the development of a rationale-driven, target based approaches towards novel therapeutics against leishmaniasis is an emergent need. The utilization of Artificial Intelligence/Machine Learning methods, which have made significant advances in drug discovery applications, would benefit the discovery process. In this review, following a summary of the disease epidemiology and available therapies, we consider three important leishmanial metabolic pathways that can be attractive targets for a structure-based drug discovery approach towards the development of novel anti-leishmanials. The folate biosynthesis pathway is critical, as Leishmania is auxotrophic for folates that are essential in many metabolic pathways. Leishmania can not synthesize purines de novo, and salvage them from the host, making the purine salvage pathway an attractive target for novel therapeutics. Leishmania also possesses an organelle glycosome, evolutionarily related to peroxisomes of higher eukaryotes, which is essential for the survival of the parasite. Research towards therapeutics is underway against enzymes from the first two pathways, while the third is as yet unexplored.
Collapse
Affiliation(s)
- Mohini Soni
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - J. Venkatesh Pratap
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence:
| |
Collapse
|
5
|
Prasanna P, Joshi T, Pant M, Pundir H, Chandra S. Evaluation of the inhibitory potential of Valproic acid against histone deacetylase of Leishmania donovani and computational studies of Valproic acid derivatives. J Biomol Struct Dyn 2022:1-18. [PMID: 35706132 DOI: 10.1080/07391102.2022.2087103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Valproic acid (VA) is a proven inhibitor of human histone deacetylases (HDACs). The homogenous HDAC has been associated with all major human parasitic pathogens and hence, it has been considered an attractive drug target for anti-leishmanial therapy. To assist in drug design endeavors for HDACs, an in-vitro study has been presented to investigate the VA inhibition on Leishmania donovani HDAC (LdHDAC). The regression analysis of VA by 24 hrs viability assay confirmed its activity against LdHDAC. Moreover, the toxicity of VA is also well documented. Thus, the in-silico experiments were also conducted to screen the non-toxic VA derivatives as anti-leishmanial drug candidates having potential as inhibitors of LdHDAC. For in-silico study, the 3D structure of target LdHDAC was developed by homology modeling. Based on their in-silico activity, we shortlisted 13 VA derivatives having maximum affinity for LdHDAC and identified four potential derivatives that can specifically bind to this protein. After that, these ligands were subjected to molecular dynamics simulation. These derivatives may be effective against L. donovani promastigotes since they followed Lipinski's RO5 and were non-toxic. Thus, screened derivatives can be considered as lead ligands for targeting LdHDAC and may be used as possible drug candidates to treat leishmaniasis and overcome the limitation of anti-leishmanial drugs. This is the first report of antileishmanial potential of VA and its derivatives targeting LdHDAC. Hence, the current investigation presents a search for novel target specific drugs to aid the anti-leishmanial drug development. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Vaishali, India
| | - Tanuja Joshi
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Manish Pant
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Hemlata Pundir
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Subhash Chandra
- Computational Biology & Biotechnology Laboratory, Department of Botany, Soban Singh Jeena University, Almora, Uttarakhand, India
| |
Collapse
|
6
|
Bhattacharya M, Sharma AR, Ghosh P, Patra P, Mallick B, Patra BC, Lee SS, Chakraborty C. TN strain proteome mediated therapeutic target mapping and multi-epitopic peptide-based vaccine development for Mycobacterium leprae. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105245. [PMID: 35150891 DOI: 10.1016/j.meegid.2022.105245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Leprosy is a significant universal health problem that is remarkably still a concern in developing countries due to infection frequency. New therapeutic molecules and next-generation vaccines are urgently needed to accelerate the leprosy-free world. In this direction, the present study was performed using two routes: proteome-mediated therapeutic target identification and mapping as well as multi-epitopic peptide-based novel vaccine development using state of the art of computational biology for the TN strain of M. leprae. The TN strain was selected from 65 Mycobacterium strains, and TN strain proteome mediated 83 therapeutic protein targets were mapped and characterized according to subcellular localization. Also, drug molecules were mapped with respect to protein targets localization. The Druggability potential of proteins was also evaluated. For multi-epitope peptide-based vaccine development, the four common types of B and T cell epitopes were identified (SLFQSHNRK, VVGIGQHAA, MMHRSPRTR, LGVDQTQPV) and combined with the suitable peptide linker. The vaccine component had an acceptable protective antigenic score (0.9751). The molecular docking of vaccine components with TLR4/MD2 complex exhibited a low ACE value (-244.12) which signifies the proper binding between the two molecules. The estimated free Gibbs binding energy ensured accurate protein-protein interactions (-112.46 kcal/mol). The vaccine was evaluated through adaptive immunity stimulation as well as immune interactions. The molecular dynamic simulation was carried out by using CHARMM topology-based parameters to minimize the docked complex. Subsequently, the Normal Mode Analysis in the internal coordinates showed a low eigen-value (1.3982892e-05), which also signifies the stability of molecular docking. Finally, the vaccine components were adopted for reverse transcription and codon optimization in E. coli strain K12 for the pGEX-4T1 vector, which supports in silico cloning of the vaccine components against the pathogen. The study directs the experimental study for therapeutics molecules discovery and vaccine candidate development with higher reliability.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore 756020, Odisha, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Pratik Ghosh
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Prasanta Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Bidyut Mallick
- Department of Applied Science, Galgotias College of Engineering and Technology, Knowledge Park-II, Greater Noida, 201306, India
| | - Bidhan Chandra Patra
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126, India.
| |
Collapse
|
7
|
Juárez-Saldivar A, Schroeder M, Salentin S, Haupt VJ, Saavedra E, Vázquez C, Reyes-Espinosa F, Herrera-Mayorga V, Villalobos-Rocha JC, García-Pérez CA, Campillo NE, Rivera G. Computational Drug Repositioning for Chagas Disease Using Protein-Ligand Interaction Profiling. Int J Mol Sci 2020; 21:ijms21124270. [PMID: 32560043 PMCID: PMC7348847 DOI: 10.3390/ijms21124270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), affects nearly eight million people worldwide. There are currently only limited treatment options, which cause several side effects and have drug resistance. Thus, there is a great need for a novel, improved Chagas treatment. Bifunctional enzyme dihydrofolate reductase-thymidylate synthase (DHFR-TS) has emerged as a promising pharmacological target. Moreover, some human dihydrofolate reductase (HsDHFR) inhibitors such as trimetrexate also inhibit T. cruzi DHFR-TS (TcDHFR-TS). These compounds serve as a starting point and a reference in a screening campaign to search for new TcDHFR-TS inhibitors. In this paper, a novel virtual screening approach was developed that combines classical docking with protein-ligand interaction profiling to identify drug repositioning opportunities against T. cruzi infection. In this approach, some food and drug administration (FDA)-approved drugs that were predicted to bind with high affinity to TcDHFR-TS and whose predicted molecular interactions are conserved among known inhibitors were selected. Overall, ten putative TcDHFR-TS inhibitors were identified. These exhibited a similar interaction profile and a higher computed binding affinity, compared to trimetrexate. Nilotinib, glipizide, glyburide and gliquidone were tested on T. cruzi epimastigotes and showed growth inhibitory activity in the micromolar range. Therefore, these compounds could lead to the development of new treatment options for Chagas disease.
Collapse
Affiliation(s)
- Alfredo Juárez-Saldivar
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - Sebastian Salentin
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - V. Joachim Haupt
- Biotechnology Center (BIOTEC), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (S.S.); (V.J.H.)
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (E.S.); (C.V.)
| | - Citlali Vázquez
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de Mexico 14080, Mexico; (E.S.); (C.V.)
| | - Francisco Reyes-Espinosa
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Verónica Herrera-Mayorga
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
- Departamento de Ingeniería Bioquímica, Unidad Académica Multidisciplinaria Mante, Universidad Autónoma de Tamaulipas, Mante 89840, Mexico
| | - Juan Carlos Villalobos-Rocha
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
| | - Carlos A. García-Pérez
- Scientific Computing Research Unit, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
| | - Nuria E. Campillo
- Centro de Investigaciones Biológicas (CIB-CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain;
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico; (A.J.-S.); (F.R.-E.); (V.H.-M.); (J.C.V.-R.)
- Correspondence: ; Tel.: +52-1-8991-601-356
| |
Collapse
|
8
|
Targeting pteridine reductase 1 and dihydrofolate reductase: the old is a new trend for leishmaniasis drug discovery. Future Med Chem 2019; 11:2107-2130. [DOI: 10.4155/fmc-2018-0512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Leishmaniasis is one of the major neglected tropical diseases in the world and it is considered endemic in 88 countries. This disease is transmitted by a Leishmania spp. infected sandfly and it may lead to cutaneous or systemic manifestations. The preconized treatment has low efficacy and there are cases of resistance to some drugs. Therefore, the search for new efficient molecular targets that can lead to the preparation of new drugs must be pursued. This review aims to evaluate both Leishmania enzymes PTR1 and DHFR-TS as potential drug targets, highlight their inhibitors and to discuss critically the use of chemoinformatics to elucidate interactions and propose new molecules against these enzymes.
Collapse
|
9
|
Bao K, Yuan W, Ma C, Yu X, Wang L, Hong M, Xi X, Zhou M, Chen T. Modification Targeting the "Rana Box" Motif of a Novel Nigrocin Peptide From Hylarana latouchii Enhances and Broadens Its Potency Against Multiple Bacteria. Front Microbiol 2018; 9:2846. [PMID: 30555431 PMCID: PMC6280737 DOI: 10.3389/fmicb.2018.02846] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/05/2018] [Indexed: 11/15/2022] Open
Abstract
Public health is confronting the threat caused by antibiotic resistance and this means new antibacterial strategies must be developed urgently. Antimicrobial peptides (AMPs) have been considered as promising therapeutic candidates against infection in the post-antibiotic era. In this paper, we dismissed the significance of “Rana box” in the natural nigrocin-HL identified from skin secretion of Hylarana latouchii by comparing its activity with nigrocin-HLD without the motif. By substituting the “Rana box” sequence with an amidated phenylalanine residue, the natural peptide was modified into a shorter AMP nigrocin-HLM. Activities and toxicities of these two peptides in vitro and in vivo were compared. As a result, nigrocin-HLM not only displayed significantly increased potency against several representative microbes, but also high activity against the antibiotic-resistant methicillin-resistant S. aureus (MRSA, NCTC 12493 and ATCC43300 and several clinical isolates) as evidenced by markedly reduced minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC). More strikingly, nigrocin-HLM exhibited prominent inhibition against MRSA infection in a pneumonia mice model. In addition, the substitution attenuated the toxicity of nigrocin-HLM as evidenced by precipitously decreased hemolytic and cytotoxic activities in vitro, and acute toxicity to mice in vivo. Taken these results into consideration, nigrocin-HLM should be a promising therapeutic candidate for anti-infection. And in addition to dismiss an indispensable role of “Rana box” in maintaining antimicrobial activity of nigrocin-HL, our data provided an inspired strategy for peptide optimization.
Collapse
Affiliation(s)
- Kaifan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Natural Drug Discovery Group, School of Pharmacy, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Weiyuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Xi Yu
- Nanjing Pharmaceutical Co., Ltd., Nanjing, China
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Computational elucidation of novel antagonists and binding insights by structural and functional analyses of serine hydroxymethyltransferase and interaction with inhibitors. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2017.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Sharma VK, Abbat S, Bharatam PV. Pharmacoinformatic Study on the Selective Inhibition of the Protozoan Dihydrofolate Reductase Enzymes. Mol Inform 2017; 36. [PMID: 28605138 DOI: 10.1002/minf.201600156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/16/2017] [Indexed: 12/27/2022]
Abstract
Dihydrofolate reductase (DHFR) is an essential enzyme of the folate metabolic pathway in protozoa and it is a validated, potential drug target in many infectious diseases. Information about unique conserved residues of the DHFR enzyme is required to understand residual selectivity of the protozoan DHFR enzyme. The three dimensional crystal structures are not available for all the protozoan DHFR enzymes. Enzyme-substrate/inhibitor interaction information is required for the binding mode characterization in protozoan DHFR for selective inhibitor design. In this work, multiple sequence analysis was carried out in all the studied species. Homology models were built for protozoan DHFR enzymes, for which 3D structures are not available in PDB. The molecular docking and Prime-MMGBSA calculations of the natural substrate (dihydrofolate, DHF) and classical DHFR inhibitor (methotrexate, MTX) were performed in protozoan DHFR enzymes. Comparative sequence analysis showed that an overall sequence identity between the studied species ranging from 22.94 % (CfDHFR-BgDHFR) to 94.61 % (LdDHFR-LmDHFR). Interestingly, it was observed that most of the active site residues were conserved in all the cases and all the enzymes exhibit similar key binding interactions with DHF and MTX in molecular docking analysis, but there are a few key binding residues which differ in protozoan species that makes it suitable for target selectivity. This information can be used to design selective and potent protozoan DHFR enzyme inhibitors.
Collapse
Affiliation(s)
- Vishnu K Sharma
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar-, 160 062, Punjab, India
| | - Sheenu Abbat
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar-, 160 062, Punjab, India
| | - P V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar-160 062, Punjab, India
| |
Collapse
|
12
|
Yang H, Chen H, Jin M, Xie H, He S, Wei JF. Molecular cloning, expression, IgE binding activities and in silico epitope prediction of Per a 9 allergens of the American cockroach. Int J Mol Med 2016; 38:1795-1805. [PMID: 27840974 PMCID: PMC5117749 DOI: 10.3892/ijmm.2016.2793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/19/2016] [Indexed: 11/06/2022] Open
Abstract
Per a 9 is a major allergen of the American cockroach (CR), which has been recognized as an important cause of imunoglobulin E-mediated type I hypersensitivity worldwide. However, it is not neasy to obtain a substantial quantity of this allergen for use in functional studies. In the present study, the Per a 9 gene was cloned and expressed in Escherichia coli (E. coli) systems. It was found that 13/16 (81.3%) of the sera from patients with allergies caused by the American CR reacted to Per a 9, as assessed by enzyme-linked immunosorbent assay, confirming that Per a 9 is a major allergen of CR. The induction of the expression of CD63 and CCR3 in passively sensitized basophils (from sera of patients with allergies caused by the American CR) by approximately 4.2-fold indicated that recombinant Per a 9 was functionally active. Three immunoinformatics tools, including the DNAStar Protean system, Bioinformatics Predicted Antigenic Peptides (BPAP) system and the BepiPred 1.0 server were used to predict the potential B cell epitopes, while Net-MHCIIpan-2.0 and NetMHCII-2.2 were used to predict the T cell epitopes of Per a 9. As a result, we predicted 11 peptides (23-28, 39-46, 58-64, 91-118, 131-136, 145-154, 159-165, 176-183, 290-299, 309-320 and 338-344) as potential B cell linear epitopes. In T cell prediction, the Per a 9 allergen was predicted to have 5 potential T cell epitope sequences, 119-127, 194-202, 210-218, 239-250 and 279-290. The findings of our study may prove to be useful in the development of peptide-based vaccines to combat CR-induced allergies.
Collapse
Affiliation(s)
- Haiwei Yang
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hao Chen
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Jin
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hua Xie
- Department of Respiratory Medicine, General Hospital of Shenyang Military Region, PLA Cancer Center, Shenyang, Liaoning 110840, P.R. China
| | - Shaoheng He
- Allergy and Clinical Immunology Research Centre, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
13
|
Tong X, Guo M, Jin M, Chen H, Li Y, Wei JF. In silico epitope prediction, expression and functional analysis of Per a 10 allergen from the American cockroach. Int J Mol Med 2016; 38:1806-1814. [PMID: 27840898 PMCID: PMC5117736 DOI: 10.3892/ijmm.2016.2790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 10/21/2016] [Indexed: 01/02/2023] Open
Abstract
Cockroach (CR) allergies caused by the American cockroach hyave been recognized to be repsonsible for IgE-mediated type I hypersensitivity worldwide. Per a 10 is one of the recognized main allergens of the American CR. In a previous study, we examined another American CR allergen, Per a 9 in patients with CR allergies and examined epitope sequences in this allergen. In the present study, we aimed to examine epitope sequences in the Per a 10 allergen. for this purpose, the Per a 10 gene was cloned and expressed in Escherichia coli (E. coli) systems. Our results revealed that 9 out of 16 (56.3%) sera from patients with American CR allergies reacted to Per a10, as assessed by ELISA, confirming that Per a 10 is a major allergen of the American CR. Our results also revealed that the expression of CD63 and CCR3 on passively sensitized basophils (obtained sera of patients with American CR allergies) was increased by approximately 2.3-fold, indicating that recombinant Per a 10 is functionally active. In addition, 3 immunoinformatics tools, namely the DNAStar Protean system, the Bioinformatics Predicted Antigenic Peptides (BPAP) system and the BepiPred 1.0 server were used to predict the peptides and the results revealed 8 peptides (2-12, 55-67, 98-120, 125-133, 149-160, 170-182, 201-208 and 223-227) as potential B cell epitopes of the Per a 10 allergen. Moreover, Per a 10 was predicted to have 3 T cell epitope sequences, namely 83-92, 139-147 and 162-170. The findings of our study on the CR allergen may prove to be useful in the development of peptide-based vaccine for the prevention and/or treatment of CR allergies.
Collapse
Affiliation(s)
- Xunliang Tong
- Department of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Jin
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hao Chen
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Clinical Research Center for Respiratory Disease, Beijing 100730, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
14
|
Antosiewicz A, Jarmuła A, Przybylska D, Mosieniak G, Szczepanowska J, Kowalkowska A, Rode W, Cieśla J. Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells. J Biomol Struct Dyn 2016; 35:1474-1490. [PMID: 27187663 DOI: 10.1080/07391102.2016.1186560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR-TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.
Collapse
Affiliation(s)
- Anna Antosiewicz
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| | - Adam Jarmuła
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Dorota Przybylska
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Grażyna Mosieniak
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Joanna Szczepanowska
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Anna Kowalkowska
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| | - Wojciech Rode
- b Nencki Institute of Experimental Biology , Polish Academy of Sciences , Pasteura 3, 02-093 , Warsaw , Poland
| | - Joanna Cieśla
- a Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw , Poland
| |
Collapse
|
15
|
Nyíri K, Vértessy BG. Perturbation of genome integrity to fight pathogenic microorganisms. Biochim Biophys Acta Gen Subj 2016; 1861:3593-3612. [PMID: 27217086 DOI: 10.1016/j.bbagen.2016.05.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/05/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Resistance against antibiotics is unfortunately still a major biomedical challenge for a wide range of pathogens responsible for potentially fatal diseases. SCOPE OF REVIEW In this study, we aim at providing a critical assessment of the recent advances in design and use of drugs targeting genome integrity by perturbation of thymidylate biosynthesis. MAJOR CONCLUSION We find that research efforts from several independent laboratories resulted in chemically highly distinct classes of inhibitors of key enzymes within the routes of thymidylate biosynthesis. The present article covers numerous studies describing perturbation of this metabolic pathway in some of the most challenging pathogens like Mycobacterium tuberculosis, Plasmodium falciparum, and Staphylococcus aureus. GENERAL SIGNIFICANCE Our comparative analysis allows a thorough summary of the current approaches to target thymidylate biosynthesis enzymes and also include an outlook suggesting novel ways of inhibitory strategies. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- Kinga Nyíri
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| | - Beáta G Vértessy
- Dept. Biotechnology, Budapest University of Technology and Economics, 4 Szent Gellért tér, Budapest HU 1111, Hungary; Institute of Enzymology, RCNS, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, Budapest HU 1117, Hungary.
| |
Collapse
|
16
|
McPhillie MJ, Cain RM, Narramore S, Fishwick CWG, Simmons KJ. Computational Methods to Identify New Antibacterial Targets. Chem Biol Drug Des 2014; 85:22-9. [DOI: 10.1111/cbdd.12385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 01/09/2023]
Affiliation(s)
| | - Ricky M. Cain
- School of Chemistry; University of Leeds; Leeds LS2 9JT UK
| | | | | | | |
Collapse
|
17
|
Rajasekaran R, Chen YPP. Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads. J Mol Model 2012; 18:4089-100. [DOI: 10.1007/s00894-012-1411-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/19/2012] [Indexed: 11/29/2022]
|
18
|
Discovery of safe and orally effective 4-aminoquinaldine analogues as apoptotic inducers with activity against experimental visceral leishmaniasis. Antimicrob Agents Chemother 2011; 56:432-45. [PMID: 22024817 DOI: 10.1128/aac.00700-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Novel antileishmanials are urgently required to overcome emergence of drug resistance, cytotoxic effects, and difficulties in oral delivery. Toward this, we investigated a series of novel 4-aminoquinaldine derivatives, a new class of molecules, as potential antileishmanials. 4-Aminoquinaldine derivatives presented inhibitory effects on L. donovani promastigotes and amastigotes (50% inhibitory concentration range, 0.94 to 127 μM). Of these, PP-9 and PP-10 were the most effective in vitro and demonstrated strong efficacies in vivo through the intraperitoneal route. They were also found to be effective against both sodium antimony gluconate-sensitive and -resistant Leishmania donovani strains in BALB/c mice when treated orally, resulting in more than 95% protection. Investigation of their mode of action revealed that killing by PP-10 involved moderate inhibition of dihydrofolate reductase and elicitation of the apoptotic cascade. Our studies implicate that PP-10 augments reactive oxygen species generation, evidenced from decreased glutathione levels and increased lipid peroxidation. Subsequent disruption of Leishmania promastigote mitochondrial membrane potential and activation of cytosolic proteases initiated the apoptotic pathway, resulting in DNA fragmentation and parasite death. Our results demonstrate that PP-9 and PP-10 are promising lead compounds with the potential for treating visceral leishmaniasis (VL) through the oral route.
Collapse
|