1
|
da Costa KS, Galúcio JMP, Leonardo ES, Cardoso G, Leal É, Conde G, Lameira J. Structural and evolutionary analysis of Leishmania Alba proteins. Mol Biochem Parasitol 2017; 217:23-31. [PMID: 28847609 DOI: 10.1016/j.molbiopara.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/23/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023]
Abstract
The Alba superfamily proteins share a common RNA-binding domain. These proteins participate in a variety of regulatory pathways by controlling developmental gene expression. They also interact with ribosomal subunits, translation factors, and other RNA-binding proteins. The Leishmania infantum genome encodes two Alba-domain proteins, LiAlba1 and LiAlba3. In this work, we used homology modeling, protein-protein docking, and molecular dynamics (MD) simulations to explore the details of the Alba1-Alba3-RNA complex from Leishmania infantum at the molecular level. In addition, we compared the structure of LiAlba3 with the human ribonuclease P component, Rpp20. We also mapped the ligand-binding residues on the Alba3 surface to analyze its druggability and performed mutational analyses in Alba3 using alanine scanning to identify residues involved in its function and structural stability. These results suggest that the RGG-box motif of LiAlba1 is important for protein function and stability. Finally, we discuss the function of Alba proteins in the context of pathogen adaptation to host cells. The data provided herein will facilitate further translational research regarding Alba structure and function.
Collapse
Affiliation(s)
- Kauê Santana da Costa
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | | | - Elvis Santos Leonardo
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | - Guelber Cardoso
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Guilherme Conde
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil.
| |
Collapse
|
2
|
Tiwari S, da Costa MP, Almeida S, Hassan SS, Jamal SB, Oliveira A, Folador EL, Rocha F, de Abreu VAC, Dorella F, Hirata R, de Oliveira DM, da Silva Teixeira MF, Silva A, Barh D, Azevedo V. C. pseudotuberculosis Phop confers virulence and may be targeted by natural compounds. Integr Biol (Camb) 2015; 6:1088-99. [PMID: 25212181 DOI: 10.1039/c4ib00140k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bacterial two-component system (TCS) regulates genes that are crucial for virulence in several pathogens. One of such TCS, the PhoPR system, consisting of a transmembrane sensory histidine kinase protein (PhoR) and an intracellular response regulator protein (PhoP), has been reported to have a major role in mycobacterial pathogenesis. We knocked out the phoP in C. pseudotuberculosis, the causal organism of caseous lymphadenitis (CLA), and using a combination of in vitro and in vivo mouse system, we showed for the first time, that the PhoP of C. pseudotuberculosis plays an important role in the virulence and pathogenicity of this bacterium. Furthermore, we modeled the PhoP of C. pseudotuberculosis and our docking results showed that several natural compounds including Rhein, an anthraquinone from Rheum undulatum, and some drug-like molecules may target PhoP to inhibit the TCS of C. pseudotuberculosis, and therefore may facilitate a remarkable attenuation of bacterial pathogenicity being the CLA. Experiments are currently underway to validate these in silico docking results.
Collapse
Affiliation(s)
- Sandeep Tiwari
- PG Program in Bioinformatics, Laboratory of Cellular and Molecular Genetics (LGCM), Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Moraes GL, Gomes GC, Monteiro de Sousa PR, Alves CN, Govender T, Kruger HG, Maguire GEM, Lamichhane G, Lameira J. Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Tuberculosis (Edinb) 2015; 95:95-111. [PMID: 25701501 DOI: 10.1016/j.tube.2015.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
Abstract
Tuberculosis (TB) is the second leading cause of human mortality from infectious diseases worldwide. The WHO reported 1.3 million deaths and 8.6 million new cases of TB in 2012. Mycobacterium tuberculosis (M. tuberculosis), the infectious bacteria that causes TB, is encapsulated by a thick and robust cell wall. The innermost segment of the cell wall is comprised of peptidoglycan, a layer that is required for survival and growth of the pathogen. Enzymes that catalyse biosynthesis of the peptidoglycan are essential and are therefore attractive targets for discovery of novel antibiotics as humans lack similar enzymes making it possible to selectively target bacteria only. In this paper, we have reviewed the structures and functions of enzymes GlmS, GlmM, GlmU, MurA, MurB, MurC, MurD, MurE and MurF from M. tuberculosis that are involved in peptidoglycan biosynthesis. In addition, we report homology modelled 3D structures of those key enzymes from M. tuberculosis of which the structures are still unknown. We demonstrated that natural substrates can be successfully docked into the active sites of the GlmS and GlmU respectively. It is therefore expected that the models and the data provided herein will facilitate translational research to develop new drugs to treat TB.
Collapse
Affiliation(s)
- Gleiciane Leal Moraes
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Guelber Cardoso Gomes
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Paulo Robson Monteiro de Sousa
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, South Africa
| | - Gyanu Lamichhane
- Johns Hopkins University School of Medicine, Taskforce to Study Resistance Emergence & Antimicrobial Development Technology, 1503 E. Jefferson St, Baltimore, MD 21231, USA
| | - Jerônimo Lameira
- Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Pará, CEP 66075-110 Belém, PA, Brazil.
| |
Collapse
|
4
|
da Silva JKR, Silva JRA, Nascimento SB, da Luz SFM, Meireles EN, Alves CN, Ramos AR, Maia JGS. Antifungal activity and computational study of constituents from Piper divaricatum essential oil against Fusarium infection in black pepper. Molecules 2014; 19:17926-42. [PMID: 25375334 PMCID: PMC6271360 DOI: 10.3390/molecules191117926] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/12/2014] [Accepted: 10/23/2014] [Indexed: 11/23/2022] Open
Abstract
Fusarium disease causes considerable losses in the cultivation of Pipernigrum, the black pepper used in the culinary world. Brazil was the largest producer of black pepper, but in recent years has lost this hegemony, with a significant reduction in its production, due to the ravages produced by the Fusarium solani f. sp. piperis, the fungus which causes this disease. Scientific research seeks new alternatives for the control and the existence of other Piper species in the Brazilian Amazon, resistant to disease, are being considered in this context. The main constituents of the oil of Piper divaricatum are methyleugenol (75.0%) and eugenol (10.0%). The oil and these two main constituents were tested individually at concentrations of 0.25 to 2.5 mg/mL against F. solani f. sp. piperis, exhibiting strong antifungal index, from 18.0% to 100.0%. The 3D structure of the β-glucosidase from Fusarium solani f. sp. piperis, obtained by homology modeling, was used for molecular docking and molecular electrostatic potential calculations in order to determine the binding energy of the natural substrates glucose, methyleugenol and eugenol. The results showed that β-glucosidase (Asp45, Arg113, Lys146, Tyr193, Asp225, Trp226 and Leu99) residues play an important role in the interactions that occur between the protein-substrate and the engenol and methyleugenol inhibitors, justifying the antifungal action of these two phenylpropenes against Fusarium solani f. sp. piperis.
Collapse
Affiliation(s)
- Joyce Kelly R da Silva
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - José Rogério A Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Soelange B Nascimento
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Shirlley F M da Luz
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Erisléia N Meireles
- Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Cláudio N Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| | - Alessandra R Ramos
- Instituto de Estudos em Saúde e Biológicas, Universidade Federal do Sul e Sudeste do Pará, Marabá, PA 68501-970, Brazil.
| | - José Guilherme S Maia
- Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil.
| |
Collapse
|
5
|
The inhibitory effect of helenalin on telomerase activity is attributed to the alkylation of the CYS445 residue: Evidence from QM/MM simulations. J Mol Graph Model 2014; 51:97-103. [DOI: 10.1016/j.jmgm.2014.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 03/16/2014] [Accepted: 04/28/2014] [Indexed: 01/18/2023]
|
6
|
da Costa KS, Leal E, dos Santos AM, Lima e Lima AH, Alves CN, Lameira J. Structural analysis of viral infectivity factor of HIV type 1 and its interaction with A3G, EloC and EloB. PLoS One 2014; 9:e89116. [PMID: 24586532 PMCID: PMC3935857 DOI: 10.1371/journal.pone.0089116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/15/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The virion infectivity factor (Vif) is an accessory protein, which is essential for HIV replication in host cells. Vif neutralizes the antiviral host protein APOBEC3 through recruitment of the E3 ubiquitin ligase complex. METHODOLOGY Fifty thousand Vif models were generated using the ab initio relax protocol of the Rosetta algorithm from sets of three- and nine-residue fragments using the fragment Monte Carlo insertion-simulated annealing strategy, which favors protein-like features, followed by an all-atom refinement. In the protocol, a constraints archive was used to define the spatial relationship between the side chains from Cys/His residues and zinc ions that formed the zinc-finger motif that is essential for Vif function. We also performed centroids analysis and structural analysis with respect to the formation of the zinc-finger, and the residue disposal in the protein binding domains. Additionally, molecular docking was used to explore details of Vif-A3G and Vif-EloBC interactions. Furthermore, molecular dynamics simulation was used to evaluate the stability of the complexes Vif-EloBC-A3G and Vif-EloC. PRINCIPAL FINDINGS The zinc in the HCCH domain significantly alters the folding of Vif and changes the structural dynamics of the HCCH region. Ab initio modeling indicated that the Vif zinc-finger possibly displays tetrahedral geometry as suggested by Mehle et al. (2006). Our model also showed that the residues L146 and L149 of the BC-box motif bind to EloC by hydrophobic interactions, and the residue P162 of the PPLP motif is important to EloB binding. CONCLUSIONS/SIGNIFICANCE The model presented here is the first complete three-dimensional structure of the Vif. The interaction of Vif with the A3G protein and the EloBC complex is in agreement with empirical data that is currently available in the literature and could therefore provide valuable structural information for advances in rational drug design.
Collapse
Affiliation(s)
- Kauê Santana da Costa
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Elcio Leal
- Faculdade de Biotecnologia, Universidade Federal do Pará, Belém, Brazil
| | - Alberto Monteiro dos Santos
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Anderson Henrique Lima e Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cláudio Nahum Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais– ICEN e Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Faculdade de Biotecnologia, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
7
|
Analysis of the structure of calpain-10 and its interaction with the protease inhibitor SNJ-1715. Comput Biol Med 2013; 43:1334-40. [DOI: 10.1016/j.compbiomed.2013.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 01/24/2023]
|