1
|
Chen L, Fan F, Yang M, Wang L, Bai Y, Qiu S, Lyu C, Huang J. Atomistic insight into the binding mode and self-regulation mechanism of IsPETase towards PET substrates with different polymerization degrees. Phys Chem Chem Phys 2023. [PMID: 37401198 DOI: 10.1039/d3cp01700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Poly(ethylene terephthalate) (PET) is one of the most widely used synthetic polyesters, however, its extensive use creates a long-term environmental burden. Unlike traditional recycling methods, biodegradation is a sustainable strategy. The emergence of PETase from Ideonella sakaiensis 201-F6 (IsPETase) has brought great potential for the industrialization of degradable PET. In this work, models of enzyme-substrate complexes with different degrees of polymerization were established to study the binding mode using molecular dynamics simulation. We found that the whole binding site can be further subdivided into three parts, including head, middle and tail binding regions. Most importantly, the presence of the middle region formed by both ends of Ser93 and Ser236 provides a potential possibility for the binding of substrates with different chain lengths, and exerts the self-regulation ability of enzymes to accommodate substrates. Meanwhile, the 'pocket bottom' Arg280 in the tail region echoes the 'pocket mouth' Trp185 in the head region, defining the substrate binding region. This work reveals the self-regulation of IsPETase, as well as the key residues for the substrate binding. The solution to these problems enables us to better understand the function of enzymes and design high-performance degradation enzymes, which is of great significance for industrial application research.
Collapse
Affiliation(s)
- Linyu Chen
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Fangfang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, P. R. China
| | - Meiyuan Yang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Linquan Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Yushuo Bai
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Changjiang Lyu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, P. R. China.
| |
Collapse
|
2
|
Abstract
Major histocompatibility complex (MHC) proteins are the most polymorphic and polygenic proteins in humans. They bind peptides, derived from cleavage of different pathogenic antigens, and are responsible for presenting them to T cells. The peptides recognized by the T cell receptors are denoted as epitopes and they trigger an immune response.In this chapter, we describe a docking protocol for predicting the peptide binding to a given MHC protein using the software tool GOLD. The protocol starts with the construction of a combinatorial peptide library used in the docking and ends with the derivation of a quantitative matrix (QM) accounting for the contribution of each amino acid at each peptide position.
Collapse
|
3
|
Paul DS, Karthe P. Improved docking of peptides and small molecules in iMOLSDOCK. J Mol Model 2023; 29:12. [DOI: 10.1007/s00894-022-05413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
|
4
|
González-Alemán R, Chevrollier N, Simoes M, Montero-Cabrera L, Leclerc F. MCSS-Based Predictions of Binding Mode and Selectivity of Nucleotide Ligands. J Chem Theory Comput 2021; 17:2599-2618. [PMID: 33764770 DOI: 10.1021/acs.jctc.0c01339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Computational fragment-based approaches are widely used in drug design and discovery. One of their limitations is the lack of performance of docking methods, mainly the scoring functions. With the emergence of fragment-based approaches for single-stranded RNA ligands, we analyze the performance in docking and screening powers of an MCSS-based approach. The performance is evaluated on a benchmark of protein-nucleotide complexes where the four RNA residues are used as fragments. The screening power can be considered the major limiting factor for the fragment-based modeling or design of sequence-selective oligonucleotides. We show that the MCSS sampling is efficient even for such large and flexible fragments. Hybrid solvent models based on some partial explicit representations improve both the docking and screening powers. Clustering of the n best-ranked poses can also contribute to a lesser extent to better performance. A detailed analysis of molecular features suggests various ways to optimize the performance further.
Collapse
Affiliation(s)
- Roy González-Alemán
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France.,Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, 10400 La Habana, Cuba
| | - Nicolas Chevrollier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France
| | - Manuel Simoes
- CPC Manufacturing Analytics, 67000 Strasbourg, France
| | - Luis Montero-Cabrera
- Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, 10400 La Habana, Cuba
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay, Gif-sur-Yvette F-91198, France
| |
Collapse
|
5
|
Sam Paul D, Gautham N. Protein-small molecule docking with receptor flexibility in iMOLSDOCK. J Comput Aided Mol Des 2018; 32:889-900. [PMID: 30128925 DOI: 10.1007/s10822-018-0152-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/11/2018] [Indexed: 12/27/2022]
Abstract
We have earlier reported the iMOLSDOCK technique to perform 'induced-fit' peptide-protein docking. iMOLSDOCK uses the mutually orthogonal Latin squares (MOLSs) technique to sample the conformation and the docking pose of the small molecule ligand and also the flexible residues of the receptor protein, and arrive at the optimum pose and conformation. In this paper we report the extension carried out in iMOLSDOCK to dock nonpeptide small molecule ligands to receptor proteins. We have benchmarked and validated iMOLSDOCK with a dataset of 34 protein-ligand complexes as well as with Astex Diverse dataset, with nonpeptide small molecules as ligands. We have also compared iMOLSDOCK with other flexible receptor docking tools GOLD v5.2.1 and AutoDock Vina. The results obtained show that the method works better than these two algorithms, though it consumes more computer time. The source code and binary of MOLS 2.0 (under a GNU Lesser General Public License) are freely available for download at https://sourceforge.net/projects/mols2-0/files/ .
Collapse
Affiliation(s)
- D Sam Paul
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - N Gautham
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
6
|
Paul DS, Gautham N. MOLS 2.0: software package for peptide modeling and protein-ligand docking. J Mol Model 2016; 22:239. [PMID: 27638416 DOI: 10.1007/s00894-016-3106-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022]
Abstract
We previously developed an algorithm to perform conformational searches of proteins and peptides, and to perform the docking of ligands to protein receptors. In order to identify optimal conformations and docked poses, this algorithm uses mutually orthogonal Latin squares (MOLS) to rationally sample the vast conformational (or docking) space, and then analyzes this relatively small sample using a variant of mean field theory. The conformational search part of the algorithm was denoted MOLS 1.0. The docking portion of the algorithm, which allows only "flexible ligand/rigid receptor" docking, was denoted MOLSDOCK. Both are FORTRAN-based command-line-only molecular docking computer programs, though a GUI was developed later for MOLS 1.0. Both the conformational search and the rigid receptor docking parts of the algorithm have been extensively validated. We have now further enhanced the capabilities of the program by incorporating "induced fit" side-chain receptor flexibility for docking peptide ligands. Benchmarking and extensive testing is now being carried out for the flexible receptor portion of the docking. Additionally, to make both the peptide conformational search and docking algorithms (the latter including both flexible ligand/rigid receptor and flexible ligand/flexible receptor techniques) more accessible to the research community, we have developed MOLS 2.0, which incorporates a new Java-based graphical user interface (GUI). Here, we give a detailed description of MOLS 2.0. The source code and binary for MOLS 2.0 are distributed free (under a GNU Lesser General Public License) to the scientific community. They are freely available for download at https://sourceforge.net/projects/mols2-0/files/ .
Collapse
Affiliation(s)
- D Sam Paul
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - N Gautham
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|