1
|
Al-Bayati ADJ, Hasoon A, Alanssari AI, Al-Thamir M, Ismael NS, Hussein MJ, Alawadi AHR. Utility of structural engineering on the monitoring of acrolein by aluminum nitride nano tube. J Mol Model 2024; 30:31. [PMID: 38196011 DOI: 10.1007/s00894-024-05827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
CONTEXT The study delves into the adsorption process of acrolein (AC) onto both an untainted and a titanium-doped aluminum nitride nanotube (AlNNT) using computations based on density functional theory. As AC approaches the pure AlNNT, it exhibits a calculated adsorption energy (Ead) of -5.3 kcal/mol, underscoring the feeble nature of the adsorption. Furthermore, there has been very little change to the AlNNT's natural electrical characteristics. On the contrary, the introduction of titanium (Ti) enhances the performance of AlNNT, rendering it more susceptible and reactive to AC signals. Analyzing the conventional Gibbs free energy of formation computationally, we ascertain that replacing a nitrogen (N) atom with a titanium (Ti) atom within the aluminum nitride nanotube (AlNNT) structure presents a more advantageous prospect. Notably, there is a substantial alteration in the energy of adsorption (Ead) for AC as a Ti atom is incorporated onto the AlNNT surface, resulting in a shift from -5.3 to -24.6 kcal/mol. METHODS Energy calculations and geometric optimizations were conducted utilizing the dispersion-augmented B3LYP method, known as B3LYP-D. In this approach, Grimme's dispersion term, referred to as the "D" term, was employed to account for dispersion forces. The basis set adopted was 6-31 + + G** (d), and all computational procedures were executed using the GAMESS software program. Following the incorporation of titanium (Ti), this adjustment leads to a substantial enhancement in sensing capability, reaching a value of 93.7. This indicates an improved electrical conductivity of the aluminum nitride nanotube (AlNNT). Remarkably, the Ti-doped AlNNT demonstrates the ability to detect AC distinctly, even in the presence of HCN, formaldehyde, ethanol, toluene, and acetone. The swift recovery process becomes evident as AC desorbs from the surface of Ti-doped AlNNT, with a calculated recovery time of 14.0 s.
Collapse
Affiliation(s)
- Alaa Dhari Jawad Al-Bayati
- Department of Chemical Engineering and Petroleum Industries, Al- Mustaqbal University College, 51001, Hilla, Iraq
| | - Ahmed Hasoon
- Engineering Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Nadia Salim Ismael
- Department of Construction Engineering & Project Management, Al-Noor University College, Bartella, Iraq
| | | | - Ahmed H R Alawadi
- Buliding and Construction Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq.
| |
Collapse
|
2
|
Ketabi S, Shalmashi S, Hallajian S. Interaction of sulfasalazine with outer surface of boron-nitride nanotube as a drug carrier in aqueous solution: insights from quantum mechanics and Monte Carlo simulation. BMC Chem 2023; 17:169. [PMID: 38017542 PMCID: PMC10683185 DOI: 10.1186/s13065-023-01088-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
The improvement of the solubility of sulfasalazine in physiological media was the major aim of this study. Accordingly, BNNT inspected as a notable candidate for the carriage of this drug in aqueous media. For this purpose, four possible interactions of two tautomer of sulfasalazine with (9,0) boron-nitride nanotube were considered in aqueous media. The compounds were optimized in gas phase using density functional calculations. Solvation free energies and association free energies of the optimized structures were then studied by Monte Carlo simulation and perturbation method in water environment. Outcomes of quantum mechanical calculations presented that interaction of keto form of sulfasalazine produce the most stable complexes with boron-nitride nanotube in gas phase. Simulation results revealed that electrostatic interactions play a vital role in the intermolecular interaction energies after binding of drug and nanotube in aqueous solution. Results of association free energy calculations indicated that complexes of both two sulfasalazine tautomers (keto and enol) and nanotube were stable in solution. Computed solvation free energies in water showed that the interaction with boron-nitride nanotube significantly improved the solubility of sulfasalazine, which could improve its in vivo bioavailability.
Collapse
Affiliation(s)
- Sepideh Ketabi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saba Shalmashi
- Active Pharmaceutical Ingredients Research (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Hallajian
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Nuñez JL, Belletti GD, Colombo E, Nazmutdinov RR, Quaino P. Fe-doped carbon nanotubes: towards the molecular design of new catalysts for the oxygen reduction reaction. Phys Chem Chem Phys 2023; 25:23242-23248. [PMID: 37608728 DOI: 10.1039/d3cp02670a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Using DFT computational methods, single-walled carbon nanotubes (CNT) are explored in different geometric configurations (armchair, chiral and zigzag) doped with Fe. Geometry, electronic structure and magnetic properties are investigated for all systems, in order to evaluate a potential application of these structures as electrocatalysts in efficient and low-cost fuel cells. In search for a better electrode material, we turn our attention on nature for help. Oxygen molecules are well-known to reveal a remarkable affinity to the heme group. Therefore, we model the adsorption/dissociative behavior of oxygen molecules on carbon nanotubes doped with Fe atoms. We analyze in detail the effect of the chiral nature of carbon nanotubes that governs their electric, magnetic and chemical behavior. Our results indicate that the dissociation phenomenon involving the armchair (5,5) Fe@CNT is more favored than other chiralities and other doped CNT systems, leading to the lowest activation barrier.
Collapse
Affiliation(s)
- J L Nuñez
- Instituto de Química Aplicada del Litoral, IQAL (UNL-CONICET), Santa Fe, Argentina.
| | - G D Belletti
- Instituto de Química Aplicada del Litoral, IQAL (UNL-CONICET), Santa Fe, Argentina.
| | - E Colombo
- Instituto de Química Aplicada del Litoral, IQAL (UNL-CONICET), Santa Fe, Argentina.
| | - R R Nazmutdinov
- Kazan National Research Technological University, 420015 Kazan, Republic of Tatarstan, Russian Federation
| | - P Quaino
- Instituto de Química Aplicada del Litoral, IQAL (UNL-CONICET), Santa Fe, Argentina.
| |
Collapse
|
4
|
Cao Y, Farahmand M, Ahmadi R, Reza Poor Heravi M, Ahmadi S, Mahmoud MZ. Unraveling the effect of Ti doping on the sensing properties of AlN nanotubes toward acrylonitrile gas. INORG CHEM COMMUN 2022; 137:109161. [DOI: 10.1016/j.inoche.2021.109161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Amiri A, Ghiasi R, Zare K, Fazaeli R. Interaction between Phosgene and B12N12 Nano-Cluster: A Computational Investigation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Menazea AA, Awwad NS, Ibrahium HA, Ebaid G, Elhosiny Ali H. Selective detection of sulfur trioxide in the presence of environmental gases by AlN nanotube. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.2016764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- A. A. Menazea
- Spectroscopy Department, Physics Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Nasser S. Awwad
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Hala A. Ibrahium
- Biology Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Department of Semi Pilot Plant, Nuclear Materials Authority, P.O. Box 530, El Maadi, Egypt
| | - Ghaffar Ebaid
- Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, 45650, Pakistan
| | - H. Elhosiny Ali
- Physics Department, faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
7
|
Ramirez-de-Arellano JM, Canales M, Magaña LF. Carbon Nanostructures Doped with Transition Metals for Pollutant Gas Adsorption Systems. Molecules 2021; 26:5346. [PMID: 34500783 PMCID: PMC8434604 DOI: 10.3390/molecules26175346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
The adsorption of molecules usually increases capacity and/or strength with the doping of surfaces with transition metals; furthermore, carbon nanostructures, i.e., graphene, carbon nanotubes, fullerenes, graphdiyne, etc., have a large specific area for gas adsorption. This review focuses on the reports (experimental or theoretical) of systems using these structures decorated with transition metals for mainly pollutant molecules' adsorption. Furthermore, we aim to present the expanding application of nanomaterials on environmental problems, mainly over the last 10 years. We found a wide range of pollutant molecules investigated for adsorption in carbon nanostructures, including greenhouse gases, anticancer drugs, and chemical warfare agents, among many more.
Collapse
Affiliation(s)
- J. M. Ramirez-de-Arellano
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Mexico;
| | - M. Canales
- Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo Xalpa No. 180, Colonia Reynosa Tamaulipas, Delegación Azcapotzalco, Ciudad de México 02200, Mexico;
| | - L. F. Magaña
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Apartado Postal 20-364, Ciudad de México 01000, Mexico
| |
Collapse
|
8
|
Theoretical investigation of the adsorption behaviors of fluorouracil as an anticancer drug on pristine and B-, Al-, Ga-doped C36 nanotube. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113209] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Banibairami T, Jamehbozorgi S, Ghiasi R, Rezvani M. Sensing Behavior of Hexagonal-Aluminum Nitride to Phosgene Molecule Based on Van der Waals–Density Functional Theory and Molecular Dynamic Simulation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420030048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Rezaei-Sameti M, Pahlevane M. A Computational Study of the Interaction CN− with the Pristine, Ge-Doped of AlPNTs. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2018. [DOI: 10.1134/s1990793117060239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
A computational study of hydrogen cyanide interaction with the pristine and B, Ga, BGa-doped of (8, 0) zigzag AlPNTs. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0668-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Lugo G, Cuesta IG, Sánchez Marín J, Sánchez de Merás A. MP2 Study of Physisorption of Molecular Hydrogen onto Defective Nanotubes: Cooperative Effect in Stone–Wales Defects. J Phys Chem A 2016; 120:4951-60. [DOI: 10.1021/acs.jpca.5b12589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- G. Lugo
- Instituto de Ciencia Molecular, Universidad de Valencia, P.O. Box 22085, 46071 Valencia, Spain
| | - I. G. Cuesta
- Instituto de Ciencia Molecular, Universidad de Valencia, P.O. Box 22085, 46071 Valencia, Spain
| | - J. Sánchez Marín
- Instituto de Ciencia Molecular, Universidad de Valencia, P.O. Box 22085, 46071 Valencia, Spain
| | - A. Sánchez de Merás
- Instituto de Ciencia Molecular, Universidad de Valencia, P.O. Box 22085, 46071 Valencia, Spain
| |
Collapse
|
13
|
Armaković S, Armaković SJ, Pelemiš S, Mirjanić D. Influence of sumanene modifications with boron and nitrogen atoms to its hydrogen adsorption properties. Phys Chem Chem Phys 2016; 18:2859-70. [DOI: 10.1039/c5cp04497a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the influence of sumanene modifications on its adsorption properties towards the hydrogen molecule.
Collapse
Affiliation(s)
- Stevan Armaković
- University of Novi Sad, Faculty of Sciences
- Department of Physics
- Novi Sad
- Serbia
| | - Sanja J. Armaković
- University of Novi Sad
- Faculty of Sciences
- Department of Chemistry
- Biochemistry and Environmental Protection
- Novi Sad
| | - Svetlana Pelemiš
- University of East Sarajevo
- Faculty of Technology
- 75400 Zvornik
- Bosnia and Herzegovina
| | - Dragoljub Mirjanić
- University of Banja Luka
- Medical Faculty
- 78000 Banja Luka
- Bosnia and Herzegovina
- Academy of Sciences and Arts of the Republic of Srpska
| |
Collapse
|
14
|
Adsorption and dissociation of nitrous oxide on pristine and defective BeO and ZnO nanotubes: DFT studies. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1239-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Tabtimsai C, Nonsri A, Gratoo N, Massiri N, Suvanvapee P, Wanno B. Carbon monoxide adsorption on carbon atom doped perfect and Stone–Wales defect single-walled boron nitride nanotubes: a DFT investigation. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-013-1138-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Beheshtian J, Baei MT, Peyghan AA, Bagheri Z. Nitrous oxide adsorption on pristine and Si-doped AlN nanotubes. J Mol Model 2012; 19:943-9. [PMID: 23097002 DOI: 10.1007/s00894-012-1634-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/07/2012] [Indexed: 10/27/2022]
Abstract
Using density functional theory, we studied the adsorption of an N(2)O molecule onto pristine and Si-doped AlN nanotubes in terms of energetic, geometric, and electronic properties. The N(2)O is weakly adsorbed onto the pristine tube, releasing energies in the range of -1.1 to -5.7 kcal mol(-1). The electronic properties of the pristine tube are not influenced by the adsorption process. The N(2)O molecule is predicted to strongly interact with the Si-doped tube in such a way that its oxygen atom diffuses into the tube wall, releasing an N(2) molecule. The energy of this reaction is calculated to be about -103.6 kcal mol(-1), and the electronic properties of the Si-doped tube are slightly altered.
Collapse
Affiliation(s)
- Javad Beheshtian
- Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran, Iran
| | | | | | | |
Collapse
|