1
|
Rahman KU, Ali K, Rauf M, Arif M. Aspergillus nomiae and fumigatus Ameliorating the Hypoxic Stress Induced by Waterlogging through Ethylene Metabolism in Zea mays L. Microorganisms 2023; 11:2025. [PMID: 37630585 PMCID: PMC10459883 DOI: 10.3390/microorganisms11082025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants' fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present research was rationalized to explore the potential of the newly isolated 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophytic consortium of Aspergillus nomiae (MA1) and Aspergillus fumigatus (MA4) on maize growth promotion under WS. MA1 and MA4 were isolated from the seeds of Moringa oleifera L., which ably produced a sufficient amount of IAA, proline, phenols, and flavonoids. MA1 and MA4 proficiently colonized the root zone of maize (Zea mays L.). The symbiotic association of MA1 and MA4 promoted the growth response of maize compared with the non-inoculated plants under WS stress. Moreover, MA1- and MA4-inoculated maize plants enhanced the production of total soluble protein, sugar, lipids, phenolics, and flavonoids, with a reduction in proline content and H2O2 production. MA1- and MA4-inoculated maize plants showed an increase in the DPPH activity and antioxidant enzyme activities of CAT and POD, along with an increased level of hormonal content (GA3 and IAA) and decreased ABA and ACC contents. Optimal stomatal activity in leaf tissue and adventitious root formation at the root/stem junction was increased in MA1- and MA4-inoculated maize plants, with reduced lysigenous aerenchyma formation, ratio of cortex-to-stele, water-filled cells, and cell gaps within roots; increased tight and round cells; and intact cortical cells without damage. MA1 and MA4 induced a reduction in deformed mesophyll cells, and deteriorated epidermal and vascular bundle cells, as well as swollen metaxylem, phloem, pith, and cortical area, in maize plants under WS compared with control. Moreover, the transcript abundance of ethylene-responsive gene ZmEREB180, responsible for the induction of the WS tolerance in maize, showed optimally reduced expression sufficient for induction in WS tolerance, in MA1- and MA4-inoculated maize plants under WS compared with the non-inoculated control. The existing research supported the use of MA1 and MA4 isolates for establishing the bipartite mutualistic symbiosis in maize to assuage the adverse effects of WS by optimizing ethylene production.
Collapse
Affiliation(s)
- Khalil Ur Rahman
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Kashmala Ali
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| |
Collapse
|
2
|
Batool T, Irshad S, Riaz M, Mahmood Baig S, Nuernberg P, Hussain MS. Recurrence mutation in RBBP8 gene causing non-syndromic autosomal recessive primary microcephaly; geometric simulation approach for insight into predicted computational models. J Hum Genet 2023; 68:469-475. [PMID: 36864288 DOI: 10.1038/s10038-023-01132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Primary microcephaly is a rare, congenital, and genetically heterogeneous disorder in which occipitofrontal head circumference is reduced by a minimum of three standard deviations (SDs) from average because of the defect in fetal brain development. OBJECTIVE Mapping of RBBP8 gene mutation that produce autosomal recessive primary microcephaly. Insilco RBBP8 protein models prediction and analysis. METHODS Consanguineous Pakistani family affected with non-syndromic primary microcephaly was mapped a biallelic sequence variant (c.1807_1808delAT) in the RBBP8 gene via whole-exome sequencing. The deleted variant in the RBBP8 gene in affected siblings (V:4, V:6) of primary microcephaly was confirmed by sanger sequencing. RESULTS Identified variant c.1807_1808delAT that truncated the protein translation p. Ile603Lysfs*7 and impaired the functioning of RBBP8 protein. This sequence variant was only reported previously in Atypical Seckel syndrome and Jawad syndrome, while we mapped it in the non-syndromic primary microcephaly family. We predicted 3D protein models by using Insilco tools like I TASSER, Swiss model, and phyre2 of wild RBBP8 protein of 897 amino acids and 608 amino acids of the mutant protein. These models were validated through the online SAVES server and Ramachandran plot and refined by using the Galaxy WEB server. A predicted and refined wild protein 3D model was deposited with accession number PM0083523 in Protein Model Database. A normal mode-based geometric simulation approach was used through the NMSim program, to find out the structural diversity of wild and mutant proteins which were evaluated by RMSD and RMSF. Higher RMSD and RMSF in mutant protein reduced the stability of the protein. CONCLUSION The high possibility of this variant results in nonsense-mediated decay of mRNA, leading to the loss of protein functioning which causes primary microcephaly.
Collapse
Affiliation(s)
- Tahira Batool
- School of Biochemistry and Biotechnology (SBB), University of the Punjab, Lahore-54590, Pakistan
| | - Saba Irshad
- School of Biochemistry and Biotechnology (SBB), University of the Punjab, Lahore-54590, Pakistan.
| | - Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Peter Nuernberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931, Cologne, Germany
| |
Collapse
|
3
|
Primary microcephaly families mapped with different microcephalic genes by using whole exome sequencing; Insilco 3D Model's prediction of STIL, CENPJ, and CEP135 protein. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Weber A, Alves J, Abujamra AL, Bustamante‐Filho IC. Structural modeling and mRNA expression of epididymal β‐defensins in GnRH immunized boars: A model for secondary hypogonadism in man. Mol Reprod Dev 2018; 85:921-933. [DOI: 10.1002/mrd.23069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Augusto Weber
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | - Jayse Alves
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | - Ana L. Abujamra
- Laboratório de Biotecnologia, Universidade do Vale do Taquari – UnivatesLajeado RS Brazil
| | | |
Collapse
|
5
|
Pramanik K, Ghosh PK, Ray S, Sarkar A, Mitra S, Maiti TK. An in silico structural, functional and phylogenetic analysis with three dimensional protein modeling of alkaline phosphatase enzyme of Pseudomonas aeruginosa. J Genet Eng Biotechnol 2017; 15:527-537. [PMID: 30647696 PMCID: PMC6296634 DOI: 10.1016/j.jgeb.2017.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/24/2017] [Accepted: 05/27/2017] [Indexed: 02/05/2023]
Abstract
Phosphorus is a primary macronutrient required for normal plant health, metabolism and survival. It is present in soil in compound insoluble form for which plant cannot uptake it directly from the soil. Some phosphate solubilizing bacteria possess some important enzymes for phosphate solubilization as well as mineralization. Alkaline (or basic) phosphatase (EC 3.1.3.1) is a type of zinc containing dimeric hydrolase enzyme responsible for removing the phosphate groups from various kinds of molecules including nucleotides, proteins, and alkaloids. Unlike acid phosphatases alkaline phosphatases are most effective in an alkaline environment. Alkaline phosphatases (ALPs) are of immense importance in various agricultural industries including dairy industries for testing successful pasteurization process. In this present study, Pseudomonas aeruginosa phosphatase was selected for a detailed computational investigation to exploit its physicochemical characteristics, structural properties including 3D model, model quality analysis, phylogenetic assessment and functional analysis using a number of available standard bioinformatics tools. The protein having average molecular weight about 51 kDa, was found thermostable and alkaline in nature belonging to metalloenzyme superfamily. Specifically, the thermostable behavior of the protein is suitable for the dairy industry. Moreover, this theoretical overview will help researchers to get an idea about the predicted protein structure and it may also help to design genetically engineered phosphate solubilizing bacteria by designing specific primers.
Collapse
Affiliation(s)
- Krishnendu Pramanik
- Microbiology Laboratory, Department of Botany, Burdwan University, West Bengal 713104, India
| | - Pallab Kumar Ghosh
- Department of Marine Science, Calcutta University, 35, Ballygunge Circular Road, Calcutta 700019, West Bengal, India
| | - Soumyajit Ray
- Microbiology Laboratory, Department of Botany, Burdwan University, West Bengal 713104, India
| | - Anumita Sarkar
- Department of Botany, Government General Degree College, Singur, West Bengal 712409, India
| | - Soumik Mitra
- Microbiology Laboratory, Department of Botany, Burdwan University, West Bengal 713104, India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, Burdwan University, West Bengal 713104, India
| |
Collapse
|
6
|
In silico structural and functional analysis of Mesorhizobium ACC deaminase. Comput Biol Chem 2017; 68:12-21. [DOI: 10.1016/j.compbiolchem.2017.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/14/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022]
|
7
|
Singh RP, Shelke GM, Kumar A, Jha PN. Corrigendum: Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Front Microbiol 2015; 6:1255. [PMID: 26594209 PMCID: PMC4635430 DOI: 10.3389/fmicb.2015.01255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 10/28/2015] [Indexed: 12/04/2022] Open
Affiliation(s)
- Rajnish P Singh
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Ganesh M Shelke
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Prabhat N Jha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| |
Collapse
|
8
|
Singh RP, Shelke GM, Kumar A, Jha PN. Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Front Microbiol 2015; 6:937. [PMID: 26441873 PMCID: PMC4563596 DOI: 10.3389/fmicb.2015.00937] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of “stress ethylene” which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits would be highly valuable to express the gene under diverse environmental conditions.
Collapse
Affiliation(s)
- Rajnish P Singh
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Ganesh M Shelke
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| | - Prabhat N Jha
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani Pilani, India
| |
Collapse
|
9
|
Studies on Plant Growth Promoting Properties of Fruit-Associated Bacteria from Elettaria cardamomum and Molecular Analysis of ACC Deaminase Gene. Appl Biochem Biotechnol 2015; 177:175-89. [PMID: 26164855 DOI: 10.1007/s12010-015-1736-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Endophytic microorganisms have been reported to have diverse plant growth promoting mechanisms including phosphate solubilization, N2 fixation, production of phyto-hormones and ACC (1-aminocyclopropane-1-carboxylate) deaminase and antiphyto-pathogenic properties. Among these, ACC deaminase production is very important because of its regulatory effect on ethylene which is a stress hormone with precise role in the control of fruit development and ripening. However, distribution of these properties among various endophytic bacteria associated with fruit tissue and its genetic basis is least investigated. In the current study, 11 endophytic bacteria were isolated and identified from the fruit tissue of Elettaria cardamomum and were studied in detail for various plant growth promoting properties especially ACC deaminase activity using both culture-based and PCR-based methods. PCR-based screening identified the isolates EcB 2 (Pantoea sp.), EcB 7 (Polaromonas sp.), EcB 9 (Pseudomonas sp.), EcB 10 (Pseudomonas sp.) and EcB 11 (Ralstonia sp.) as positive for ACC deaminase. The PCR products were further subjected to sequence analysis which proved the similarity of the sequences identified in the study with ACC deaminase sequences reported from other sources. The detailed bioinformatic analysis of the sequence including homology-based modelling and molecular docking confirmed the sequences to have ACC deaminase activity. The docking of the modelled proteins was done using patch dock, and the detailed scrutiny of the protein ligand interaction revealed conservation of key amino acids like Lys51, Ser78, Tyr268 and Tyr294 which play important role in the enzyme activity. These suggest the possible regulatory effect of these isolates on fruit physiology.
Collapse
|
10
|
Nonaka S, Ezura H. Plant-Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer. FRONTIERS IN PLANT SCIENCE 2014; 5:681. [PMID: 25520733 PMCID: PMC4253739 DOI: 10.3389/fpls.2014.00681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/15/2014] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-promoting rhizobacteria (PGPR) can reduce ethylene levels in plants through 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which cleaves the ethylene precursor ACC into α-ketobutyrate and ammonia, resulting in reduced ethylene production. The whole genome sequence data showed that A. tumefaciens does not possess an ACC deaminase gene in its genome. Therefore, providing ACC deaminase activity to the bacteria would improve gene transfer. As expected, A. tumefaciens with ACC deaminase activity, designated as super-Agrobacterium, could suppress ethylene evolution and increase the gene transfer efficiency in several plant species. In this review, we summarize plant-Agrobacterium interactions and their applications for improving Agrobacterium-mediated genetic engineering techniques via super-Agrobacterium.
Collapse
Affiliation(s)
| | - Hiroshi Ezura
- *Correspondence: Hiroshi Ezura, Gene Research Center, Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan e-mail:
| |
Collapse
|
11
|
New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS One 2014; 9:e99168. [PMID: 24905353 PMCID: PMC4048297 DOI: 10.1371/journal.pone.0099168] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 05/09/2014] [Indexed: 01/13/2023] Open
Abstract
The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications.
Collapse
|
12
|
Gontia-Mishra I, Sasidharan S, Tiwari S. Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnol Lett 2014; 36:889-98. [PMID: 24563292 DOI: 10.1007/s10529-014-1458-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
Ethylene is an essential plant hormone also known as a stress hormone because its synthesis is accelerated by induction of a variety of biotic and abiotic stress. The plant growth promoting bacteria containing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase enhances plant growth by decreasing plant ethylene levels under stress conditions. The expression of ACC deaminase (acdS) gene in transgenic plants is an alternative approach to overcome the ethylene-induced stress. Several transgenic plants have been engineered to express both bacterial/plant acdS genes which then lowers the stress-induced ethylene levels, thus efficiently combating the deleterious effects of environmental stresses. This review summarizes the current knowledge of various transgenic plants overexpressing microbial and plant acdS genes and their potential under diverse biotic and abiotic stresses. Transcription regulation mechanism of acdS gene from different bacteria, with special emphasis to nitrogen fixing bacteria is also discussed in this review.
Collapse
Affiliation(s)
- Iti Gontia-Mishra
- Biotechnology Centre, Jawaharlal Nehru Agricultural University, Jabalpur, 482004, India,
| | | | | |
Collapse
|
13
|
Muthuswamy A, Eapen SJ. Research on Plant Pathogenic Fungi in the Genomics Era: From Sequence Analysis to Systems Biology. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|