• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5107320)   Today's Articles (2810)
For: Saraswathi S, Fernández-Martínez JL, Kolinski A, Jernigan RL, Kloczkowski A. Fast learning optimized prediction methodology (FLOPRED) for protein secondary structure prediction. J Mol Model 2012;18:4275-89. [PMID: 22562230 PMCID: PMC3694724 DOI: 10.1007/s00894-012-1410-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Number Cited by Other Article(s)
1
Rashid S, Sundaram S, Kwoh CK. Empirical Study of Protein Feature Representation on Deep Belief Networks Trained With Small Data for Secondary Structure Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023;20:955-966. [PMID: 35439138 DOI: 10.1109/tcbb.2022.3168676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
2
Akbar S, Pardasani KR, Panda NR. PSO Based Neuro-fuzzy Model for Secondary Structure Prediction of Protein. Neural Process Lett 2021. [DOI: 10.1007/s11063-021-10615-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
3
Krieger S, Kececioglu J. Boosting the accuracy of protein secondary structure prediction through nearest neighbor search and method hybridization. Bioinformatics 2021;36:i317-i325. [PMID: 32657384 PMCID: PMC7355242 DOI: 10.1093/bioinformatics/btaa336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
4
Agrawal S, Ransom RF, Saraswathi S, Garcia-Gonzalo E, Webb A, Fernandez-Martinez JL, Popovic M, Guess AJ, Kloczkowski A, Benndorf R, Sadee W, Smoyer WE, on behalf of the Pediatric Nephrology Research Consortium (PNRC). Sulfatase 2 Is Associated with Steroid Resistance in Childhood Nephrotic Syndrome. J Clin Med 2021;10:523. [PMID: 33540508 PMCID: PMC7867139 DOI: 10.3390/jcm10030523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 01/17/2023]  Open
5
Prediction of Protein Tertiary Structure via Regularized Template Classification Techniques. Molecules 2020;25:molecules25112467. [PMID: 32466409 PMCID: PMC7321371 DOI: 10.3390/molecules25112467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/24/2022]  Open
6
Álvarez Ó, Fernández-Martínez JL, Corbeanu AC, Fernández-Muñiz Z, Kloczkowski A. Predicting protein tertiary structure and its uncertainty analysis via particle swarm sampling. J Mol Model 2019;25:79. [PMID: 30810816 PMCID: PMC7586042 DOI: 10.1007/s00894-019-3956-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
7
Yang Y, Gao J, Wang J, Heffernan R, Hanson J, Paliwal K, Zhou Y. Sixty-five years of the long march in protein secondary structure prediction: the final stretch? Brief Bioinform 2018;19:482-494. [PMID: 28040746 PMCID: PMC5952956 DOI: 10.1093/bib/bbw129] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/15/2016] [Indexed: 11/13/2022]  Open
8
Álvarez Ó, Fernández-Martínez JL, Fernández-Brillet C, Cernea A, Fernández-Muñiz Z, Kloczkowski A. Principal component analysis in protein tertiary structure prediction. J Bioinform Comput Biol 2018;16:1850005. [PMID: 29566640 DOI: 10.1142/s0219720018500051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
9
Protein secondary structure prediction: A survey of the state of the art. J Mol Graph Model 2017;76:379-402. [DOI: 10.1016/j.jmgm.2017.07.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 11/21/2022]
10
Rashid S, Saraswathi S, Kloczkowski A, Sundaram S, Kolinski A. Protein secondary structure prediction using a small training set (compact model) combined with a Complex-valued neural network approach. BMC Bioinformatics 2016;17:362. [PMID: 27618812 PMCID: PMC5020447 DOI: 10.1186/s12859-016-1209-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 08/25/2016] [Indexed: 11/17/2022]  Open
11
Patel MS, Mazumdar HS. Knowledge base and neural network approach for protein secondary structure prediction. J Theor Biol 2014;361:182-9. [DOI: 10.1016/j.jtbi.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 08/01/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
12
Huang G, Huang GB, Song S, You K. Trends in extreme learning machines: a review. Neural Netw 2014;61:32-48. [PMID: 25462632 DOI: 10.1016/j.neunet.2014.10.001] [Citation(s) in RCA: 487] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/25/2014] [Accepted: 10/02/2014] [Indexed: 01/29/2023]
13
Cartwright H, Curteanu S. Neural Networks Applied in Chemistry. II. Neuro-Evolutionary Techniques in Process Modeling and Optimization. Ind Eng Chem Res 2013. [DOI: 10.1021/ie4000954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
14
Saraswathi S, Fernández-Martínez JL, Koliński A, Jernigan RL, Kloczkowski A. Distributions of amino acids suggest that certain residue types more effectively determine protein secondary structure. J Mol Model 2013;19:4337-48. [PMID: 23907551 DOI: 10.1007/s00894-013-1911-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/05/2013] [Indexed: 11/27/2022]
15
Zhou C, Hou C, Zhang Q, Wei X. Enhanced hybrid search algorithm for protein structure prediction using the 3D-HP lattice model. J Mol Model 2013;19:3883-91. [PMID: 23824509 DOI: 10.1007/s00894-013-1907-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA