1
|
Zhang W, Cheng L, Li K, Xie L, Ji J, Lei X, Jiang A, Chen C, Li H, Li P, Sun Q. Evolutional heterochromatin condensation delineates chromocenter formation and retrotransposon silencing in plants. NATURE PLANTS 2024; 10:1215-1230. [PMID: 39014153 DOI: 10.1038/s41477-024-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Heterochromatic condensates (chromocenters) are critical for maintaining the silencing of heterochromatin. It is therefore puzzling that the presence of chromocenters is variable across plant species. Here we reveal that variations in the plant heterochromatin protein ADCP1 confer a diversity in chromocenter formation via phase separation. ADCP1 physically interacts with the high mobility group protein HMGA to form a complex and mediates heterochromatin condensation by multivalent interactions. The loss of intrinsically disordered regions (IDRs) in ADCP1 homologues during evolution has led to the absence of prominent chromocenter formation in various plant species, and introduction of IDR-containing ADCP1 with HMGA promotes heterochromatin condensation and retrotransposon silencing. Moreover, plants in the Cucurbitaceae group have evolved an IDR-containing chimaera of ADCP1 and HMGA, which remarkably enables formation of chromocenters. Together, our work uncovers a coevolved mechanism of phase separation in packing heterochromatin and silencing retrotransposons.
Collapse
Affiliation(s)
- Weifeng Zhang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lingling Cheng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Kuan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Leiming Xie
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jinyao Ji
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Lei
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Anjie Jiang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Chunlai Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haitao Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Molecular Oncology, MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qianwen Sun
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
2
|
Tien CL, Mohammadparast S, Chang C. Heterochromatin protein 1 beta regulates neural and neural crest development by repressing pluripotency-associated gene pou5f3.2/oct25 in Xenopus. Dev Dyn 2021; 250:1113-1124. [PMID: 33595886 DOI: 10.1002/dvdy.319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Heterochromatin protein 1 (HP1) is associated with and plays a role in compact chromatin conformation, but the function of HP1 in vertebrate embryogenesis is not understood completely. RESULTS Here, we explore the activity of HP1 in early neural development in the frog Xenopus laevis. We show that the three isoforms of HP1, HP1α, β, and γ, are expressed in similar patterns in the neural and neural crest derivatives in early embryos. Despite this, knockdown of HP1β and HP1γ, but not HP1α, in presumptive neural tissues leads to head defects. Late pan-neural markers and neural crest specifier genes are reduced, but early neural and neural plate border genes are less affected in the morphant embryos. Further investigation reveals that neuronal differentiation is impaired and a pluripotency-associated gene, pou5f3.2/oct25, is expanded in HP1β morphants. Ectopic expression of pou5f3.2/oct25 mimics the effect of HP1β knockdown on marker expression, whereas simultaneous knockdown of HP1β and pou5f3.2/oct25 partially rescues expression of these genes. CONCLUSION Taken together, the data suggest that HP1β regulates transition from precursor to more differentiated cell types during neural and neural crest development in Xenopus, and it does so at least partially via repression of the pluripotency-associated transcription regulator pou5f3.2/oct25.
Collapse
Affiliation(s)
- Chih-Liang Tien
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Saeid Mohammadparast
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Musselman CA, Kutateladze TG. Characterization of functional disordered regions within chromatin-associated proteins. iScience 2021; 24:102070. [PMID: 33604523 PMCID: PMC7873657 DOI: 10.1016/j.isci.2021.102070] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intrinsically disordered regions (IDRs) are abundant and play important roles in the function of chromatin-associated proteins (CAPs). These regions are often found at the N- and C-termini of CAPs and between structured domains, where they can act as more than just linkers, directly contributing to function. IDRs have been shown to contribute to substrate binding, act as auto-regulatory regions, and drive liquid-liquid droplet formation. Their disordered nature provides increased functional diversity and allows them to be easily regulated through post-translational modification. However, these regions can be especially challenging to characterize on a structural level. Here, we review the prevalence of IDRs in CAPs, highlighting several studies that address their importance in CAP function and show progress in structural characterization of these regions. A focus is placed on the unique opportunity to apply nuclear magnetic resonance (NMR) spectroscopy alongside cryo-electron microscopy to characterize IDRs in CAPs.
Collapse
Affiliation(s)
- Catherine A Musselman
- Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Yamazaki Y, Urrutia R, Franco LM, Giliani S, Zhang K, Alazami AM, Dobbs AK, Masneri S, Joshi A, Otaizo-Carrasquero F, Myers TG, Ganesan S, Bondioni MP, Ho ML, Marks C, Alajlan H, Mohammed RW, Zou F, Valencia CA, Filipovich AH, Facchetti F, Boisson B, Azzari C, Al-Saud BK, Al-Mousa H, Casanova JL, Abraham RS, Notarangelo LD. PAX1 is essential for development and function of the human thymus. Sci Immunol 2020; 5:5/44/eaax1036. [PMID: 32111619 DOI: 10.1126/sciimmunol.aax1036] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/28/2020] [Indexed: 02/05/2023]
Abstract
We investigated the molecular and cellular basis of severe combined immunodeficiency (SCID) in six patients with otofaciocervical syndrome type 2 who failed to attain T cell reconstitution after allogeneic hematopoietic stem cell transplantation, despite successful engraftment in three of them. We identified rare biallelic PAX1 rare variants in all patients. We demonstrated that these mutant PAX1 proteins have an altered conformation and flexibility of the paired box domain and reduced transcriptional activity. We generated patient-derived induced pluripotent stem cells and differentiated them into thymic epithelial progenitor cells and found that they have an altered transcriptional profile, including for genes involved in the development of the thymus and other tissues derived from pharyngeal pouches. These results identify biallelic, loss-of-function PAX1 mutations as the cause of a syndromic form of SCID due to altered thymus development.
Collapse
Affiliation(s)
- Yasuhiro Yamazaki
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Raul Urrutia
- Human and Molecular Genetics Center, Medical College Wisconsin, Milwaukee, MI, USA
| | - Luis M Franco
- Systemic Autoimmunity Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Silvia Giliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Cytogenetic and Medical Genetics Unit, "A. Nocivelli" Institute for Molecular Medicine, Spedali Civili Hospital, Brescia, Italy
| | - Kejian Zhang
- Coyote Bioscience USA Inc., San Jose, CA 95138, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - A Kerry Dobbs
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Stefania Masneri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Cytogenetic and Medical Genetics Unit, "A. Nocivelli" Institute for Molecular Medicine, Spedali Civili Hospital, Brescia, Italy
| | - Avni Joshi
- Division of Pediatric Allergy and Immunology, Mayo Clinic Children's Center, Rochester, MN, USA
| | | | - Timothy G Myers
- Genomic Technologies Section, NIAID, NIH, Bethesda, MD 20892, USA
| | - Sundar Ganesan
- Research Technologies Branch, DIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Maria Pia Bondioni
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Mai Lan Ho
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Huda Alajlan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Fanggeng Zou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,GeneDx Inc., Gaithersburg, MD 20877, USA
| | - C Alexander Valencia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.,PerkinElmer Genomics, Pittsburgh, PA 15275, USA.,Department of Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Aperiomics Inc., Sterling, VA 20166, USA
| | - Alexandra H Filipovich
- Cancer and Blood Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Chiara Azzari
- Pediatric Immunology, Department of Health Sciences, University of Florence, Florence, Italy.,Meyer Children's Hospital, Florence, Italy
| | - Bander K Al-Saud
- Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Hamoud Al-Mousa
- Alfaisal University, Riyadh, Saudi Arabia.,Department of Pediatrics, Allergy and Immunology Section, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Jean Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch INSERM, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatrics Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Kumar A, Kono H. Heterochromatin protein 1 (HP1): interactions with itself and chromatin components. Biophys Rev 2020; 12:387-400. [PMID: 32144738 PMCID: PMC7242596 DOI: 10.1007/s12551-020-00663-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022] Open
Abstract
Isoforms of heterochromatin protein 1 (HP1) have been known to perform a multitude of functions ranging from gene silencing, gene activation to cell cycle regulation, and cell differentiation. This functional diversity arises from the dissimilarities coded in protein sequence which confers different biophysical and biochemical properties to individual structural elements of HP1 and thereby different behavior and interaction patterns. Hence, an understanding of various interactions of the structural elements of HP1 will be of utmost importance to better elucidate chromatin dynamics in its presence. In this review, we have gathered available information about interactions of HP1 both within and with itself as well as with chromatin elements. Also, the possible implications of these interactions are discussed.
Collapse
Affiliation(s)
- Amarjeet Kumar
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan
| | - Hidetoshi Kono
- Molecular Modelling and Simulation (MMS) Group, Institute for Quantum Life Science (iQLS), National Institutes for Quantum and Radiological Science and Technology (QST), Kizugawa, Kyoto, 619-0215, Japan.
| |
Collapse
|
6
|
Mathison A, Milech De Assuncao T, Dsouza NR, Williams M, Zimmermann MT, Urrutia R, Lomberk G. Discovery, expression, cellular localization, and molecular properties of a novel, alternative spliced HP1γ isoform, lacking the chromoshadow domain. PLoS One 2020; 15:e0217452. [PMID: 32027651 PMCID: PMC7004349 DOI: 10.1371/journal.pone.0217452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
By reading the H3K9Me3 mark through their N-terminal chromodomain (CD), HP1 proteins play a significant role in cancer-associated processes, including cell proliferation, differentiation, chromosomal stability, and DNA repair. Here, we used a combination of bioinformatics-based methodologies, as well as experimentally-derived datasets, that reveal the existence of a novel short HP1γ (CBX3) isoform, named here sHP1γ, generated by alternative splicing of the CBX3 locus. The sHP1γ mRNA encodes a protein composed of 101 residues and lacks the C-terminal chromoshadow domain (CSD) that is required for dimerization and heterodimerization in the previously described 183 a. a HP1γ protein. Fold recognition, order-to-disorder calculations, threading, homology-based molecular modeling, docking, and molecular dynamic simulations show that the sHP1γ is comprised of a CD flanked by intrinsically disordered regions (IDRs) with an IDR-CD-IDR domain organization and likely retains the ability to bind to the H3K9Me3. Both qPCR analyses and mRNA-seq data derived from large-scale studies confirmed that sHP1γ mRNA is expressed in the majority of human tissues at approximately constant ratios with the chromoshadow domain containing isoform. However, sHP1γ mRNA levels appear to be dysregulated in different cancer types. Thus, our data supports the notion that, due to the existence of functionally different isoforms, the regulation of HP1γ-mediated functions is more complex than previously anticipated.
Collapse
Affiliation(s)
- Angela Mathison
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Thiago Milech De Assuncao
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nikita R. Dsouza
- Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Monique Williams
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Raul Urrutia
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Gwen Lomberk
- Genomics and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Division of Research, Department of Surgery, Medical College of Wisconsin, WI Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
7
|
NBS1 interacts with HP1 to ensure genome integrity. Cell Death Dis 2019; 10:951. [PMID: 31836699 PMCID: PMC6911104 DOI: 10.1038/s41419-019-2185-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Heterochromatin Protein 1 (HP1) and the Mre11-Rad50-Nbs1 (MRN) complex are conserved factors that play crucial role in genome stability and integrity. Despite their involvement in overlapping cellular functions, ranging from chromatin organization, telomere maintenance to DNA replication and repair, a tight functional relationship between HP1 and the MRN complex has never been elucidated. Here we show that the Drosophila HP1a protein binds to the MRN complex through its chromoshadow domain (CSD). In addition, loss of any of the MRN members reduces HP1a levels indicating that the MRN complex acts as regulator of HP1a stability. Moreover, overexpression of HP1a in nbs (but not in rad50 or mre11) mutant cells drastically reduces DNA damage associated with the loss of Nbs suggesting that HP1a and Nbs work in concert to maintain chromosome integrity in flies. We have also found that human HP1α and NBS1 interact with each other and that, similarly to Drosophila, siRNA-mediated inhibition of NBS1 reduces HP1α levels in human cultured cells. Surprisingly, fibroblasts from Nijmegen Breakage Syndrome (NBS) patients, carrying the 657del5 hypomorphic mutation in NBS1 and expressing the p26 and p70 NBS1 fragments, accumulate HP1α indicating that, differently from NBS1 knockout cells, the presence of truncated NBS1 extends HP1α turnover and/or promotes its stability. Remarkably, an siRNA-mediated reduction of HP1α in NBS fibroblasts decreases the hypersensitivity to irradiation, a characteristic of the NBS syndrome. Overall, our data provide an unanticipated evidence of a close interaction between HP1 and NBS1 that is essential for genome stability and point up HP1α as a potential target to counteract chromosome instability in NBS patient cells.
Collapse
|
8
|
Zimmermann MT, Williams MM, Klee EW, Lomberk GA, Urrutia R. Modeling post-translational modifications and cancer-associated mutations that impact the heterochromatin protein 1α-importin α heterodimers. Proteins 2019; 87:904-916. [PMID: 31152607 PMCID: PMC6790107 DOI: 10.1002/prot.25752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 12/27/2022]
Abstract
Heterochromatin protein 1α (HP1α) is a protein that mediates cancer-associated processes in the cell nucleus. Proteomic experiments, reported here, demonstrate that HP1α complexes with importin α (IMPα), a protein necessary for its nuclear transport. This data is congruent with Simple Linear Motif (SLiM) analyses that identify an IMPα-binding motif within the linker that joins the two globular domains of this protein. Using molecular modeling and dynamics simulations, we develop a model of the IMPα-HP1α complex and investigate the impact of phosphorylation and genomic variants on their interaction. We demonstrate that phosphorylation of the HP1α linker likely regulates its association with IMPα, which has implications for HP1α access to the nucleus, where it functions. Cancer-associated genomic variants do not abolish the interaction of HP1α but instead lead to rearrangements where the variant proteins maintain interaction with IMPα, but with less specificity. Combined, this new mechanistic insight bears biochemical, cell biological, and biomedical relevance.
Collapse
Affiliation(s)
- Michael T. Zimmermann
- Bioinformatics Research and Development Laboratory, and Precision Medicine Simulation Unit, Genomic Science and Precision Medicine Center (GSPMC)Medical College of WisconsinMilwaukeeWisconsin
- Clinical and Translational Sciences InstituteMedical College of WisconsinMilwaukeeWisconsin
| | - Monique M. Williams
- Department of BiochemistryMayo ClinicRochesterMinnesota
- Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Eric W. Klee
- Department of BiochemistryMayo ClinicRochesterMinnesota
- Division of Biomedical Statistics and InformaticsMayo ClinicRochesterMinnesota
| | - Gwen A. Lomberk
- Division of Research, Department of SurgeryMedical College of WisconsinMilwaukeeWisconsin
- Department of Pharmacology and ToxicologyMedical College of WisconsinMilwaukeeWisconsin
- Genomic Science and Precision Medicine Center (GSPMC)Medical College of WisconsinMilwaukeeWisconsin
| | - Raul Urrutia
- Division of Research, Department of SurgeryMedical College of WisconsinMilwaukeeWisconsin
- Genomic Science and Precision Medicine Center (GSPMC)Medical College of WisconsinMilwaukeeWisconsin
- Department of BiochemistryMedical College of WisconsinMilwaukeeWisconsin
| |
Collapse
|
9
|
Zhong X, Kan A, Zhang W, Zhou J, Zhang H, Chen J, Tang S. CBX3/HP1γ promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:5483-5497. [PMID: 31375643 PMCID: PMC6710055 DOI: 10.18632/aging.102132] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 02/05/2023]
Abstract
HP1γ, encoded by CBX3, is associated with cancer progression and patient prognosis. However, the prognostic value and functions of CBX3/HP1γ in hepatocellular carcinoma (HCC) remain unclear. Here, we performed a bioinformatics analysis using the Oncomine, TCGA and Human Protein Atlas databases, the Kaplan-Meier plotter, and the UALCAN web-portal to explore the expression and prognostic significance of CBX3/HP1γ in patients with different cancers, including liver cancer. HCC tissues and microarrays containing 354 samples were examined using immunohistochemical staining, quantitative real-time polymerase chain reaction, and Western blotting. CBX3-overexpression HCC cell lines were tested in proliferation assays to determine the function of CBX3/HP1γ. We found that CBX3/HP1γ was upregulated in many cancers and was associated with poor prognosis. Our results also revealed that CBX3/HP1γ is elevated in HCC tissues and is associated with malignant clinicopathological characteristics. Kaplan-Meier and Cox regression analyses verified that high CBX3/HP1γ expression is an independent and significant prognostic factor for reduced overall survival in HCC patients. Moreover, invitro functional assays showed that CBX3/HP1γ overexpression promotes HCC cell proliferation. These findings suggest that CBX3/HP1γ is an important oncogene in HCC that might act as a useful biomarker for prognosis and targeted therapy.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Middle Aged
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Anna Kan
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jianda Zhou
- Department of Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Huayong Zhang
- The Department of Hepatobiliary Oncology of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong 510060, P.R. China
- Department of Thyroid and Breast Surgery, The Fifth Affiliated Hospital of Sun Yat sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| |
Collapse
|
10
|
Xiao Z, Cong Y, Huang K, Zhong S, Zhang JZH, Duan L. Drug-resistance mechanisms of three mutations in anaplastic lymphoma kinase against two inhibitors based on MM/PBSA combined with interaction entropy. Phys Chem Chem Phys 2019; 21:20951-20964. [DOI: 10.1039/c9cp02851j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a promising drug target in the treatment of lung cancer, anaplastic lymphoma kinase (ALK) and its mutations have been studied widely. This work explored the origin of the resistance mechanism of the ALK mutants again two inhibitors.
Collapse
Affiliation(s)
- Zhengrong Xiao
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| | - Yalong Cong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Kaifang Huang
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| | - Susu Zhong
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Lili Duan
- School of Physics and Electronics
- Shandong Normal University
- Jinan
- China
| |
Collapse
|
11
|
Bilgiç F, Gerçeker E, Boyacıoğlu SÖ, Kasap E, Demirci U, Yıldırım H, Baykan AR, Yüceyar H. Potential role of chromatin remodeling factor genes in atrophic gastritis/gastric cancer risk. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2018; 29:427-435. [PMID: 30249557 PMCID: PMC6284651 DOI: 10.5152/tjg.2018.17350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/16/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND/AIMS Atrophic gastritis (AG), intestinal metaplasia (IM), and Helicobacter pylori (HP) are the risk factors for the development of gastric cancer (GC). Chromatin remodeling is one of the epigenetic mechanisms involved in the carcinogenesis of GC. The purpose of this study was to investigate the expression profiles of defined chromatin remodeling genes in gastric mucosal samples and their values as gastric carcinogenesis biomarkers. MATERIALS AND METHODS In total, 95 patients were included in the study. Patients were divided into 3 groups as: GC group (n=34), AG group (n=36), and control group (n=25). AG group was further divided into subgroups based on the presence of HP and IM in gastric mucosa. Chromatin remodeling gene expressions were analyzed using real-time PCR (RT-PCR) array in all groups. Data were evaluated using the RT-qPCR primer assay data analysis software. RESULTS EED, CBX3, and MTA1 were more overexpressed, whereas ARID1A, ING5, and CBX7 were more underexpressed in the AG and GC groups compared with the controls. No significant differences were observed between the AG and GC groups concerning the expression of these 6 genes, although the fold change levels of these genes in the GC group were well above than in the AG group. EED, CBX3, and MTA1 were significantly more overexpressed in HP- and IM-positive AG subgroup compared with the HP- or IM-negative AG subgroup. CONCLUSION In conclusion, our results provide an evidence of epigenetic alterations in AG. Expressions of EED, CBX3, MTA1, ARID1A, ING5, and CBX7 may be considered as promising markers to be used in GC screening for patients with AG.
Collapse
Affiliation(s)
- Fahri Bilgiç
- Department of Internal Medicine, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Emre Gerçeker
- Department of Gastroenterology, Gazi Hospital, İzmir, Turkey
| | - Seda Örenay Boyacıoğlu
- Department of Medical Genetics, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Elmas Kasap
- Department of Gastroenterology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Ufuk Demirci
- Department of Internal Medicine, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Hatice Yıldırım
- Department of Medical Biology, Celal Bayar University School of Medicine, Manisa, Turkey
| | - Ahmed Ramiz Baykan
- Department of Gastroenterology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Hakan Yüceyar
- Department of Gastroenterology, Celal Bayar University School of Medicine, Manisa, Turkey
| |
Collapse
|
12
|
Charó NL, Galigniana NM, Piwien-Pilipuk G. Heterochromatin protein (HP)1γ is not only in the nucleus but also in the cytoplasm interacting with actin in both cell compartments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:432-443. [PMID: 29208528 DOI: 10.1016/j.bbamcr.2017.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/07/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent. HP1γ exhibited a filamentous pattern of staining partially co-localizing with actin in the cytoplasm of myotubes and myofibrils. Immunoelectron microscopic analysis showed high-density immunogold particles that correspond to HP1γ localized to the Z-disk and A-band of the sarcomere of skeletal muscle. HP1γ partially co-localized with actin in C2C12 myotubes and murine myofibrils. Importantly, actin co-immunoprecipitated with HP1γ in the nuclear and cytosolic fractions of myoblasts. Actin co-immunoprecipitated with HP1γ in myoblasts incubated in the absence or presence of the actin depolymerizing agent cytochalasin D, suggesting that HP1γ may interact with G-and F-actin. In the cytoplasm, HP1γ was associated to the perinuclear actin cap that controls nuclear shape and position. In the nucleus, re-ChIP assays showed that HP1γ-actin associates to the promoter and transcribed regions of the house keeping gene GAPDH, suggesting that HP1γ may function as a scaffold protein for the recruitment of actin to control gene expression. When HP1γ was knocked-down, myoblasts were unable to differentiate or originated thin myotubes. In summary, HP1γ is present in the nucleus and the cytoplasm interacting with actin, a protein complex that may exert different functions depending on its subcellular localization.
Collapse
Affiliation(s)
- Nancy L Charó
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia M Galigniana
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Graciela Piwien-Pilipuk
- Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
13
|
Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 2017; 547:236-240. [PMID: 28636604 PMCID: PMC5606208 DOI: 10.1038/nature22822] [Citation(s) in RCA: 1212] [Impact Index Per Article: 151.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 05/16/2017] [Indexed: 01/15/2023]
Abstract
Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.
Collapse
Affiliation(s)
- Adam G. Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Elnatan
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madeline M. Keenen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael J. Trnka
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonathan B. Johnston
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Geeta J. Narlikar
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
14
|
Higgins EM, Bos JM, Mason-Suares H, Tester DJ, Ackerman JP, MacRae CA, Sol-Church K, Gripp KW, Urrutia R, Ackerman MJ. Elucidation of MRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight 2017; 2:e91225. [PMID: 28289718 DOI: 10.1172/jci.insight.91225] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Noonan syndrome (NS; MIM 163950) is an autosomal dominant disorder and a member of a family of developmental disorders termed "RASopathies," which are caused mainly by gain-of-function mutations in genes encoding RAS/MAPK signaling pathway proteins. Whole exome sequencing (WES) and trio-based genomic triangulation of a 15-year-old female with a clinical diagnosis of NS and concomitant cardiac hypertrophy and her unaffected parents identified a de novo variant in MRAS-encoded RAS-related protein 3 as the cause of her disease. Mutation analysis using in silico mutation prediction tools and molecular dynamics simulations predicted the identified variant, p.Gly23Val-MRAS, to be damaging to normal protein function and adversely affect effector interaction regions and the GTP-binding site. Subsequent ectopic expression experiments revealed a 40-fold increase in MRAS activation for p.Gly23Val-MRAS compared with WT-MRAS. Additional biochemical assays demonstrated enhanced activation of both RAS/MAPK pathway signaling and downstream gene expression in cells expressing p.Gly23Val-MRAS. Mutational analysis of MRAS in a cohort of 109 unrelated patients with phenotype-positive/genotype-negative NS and cardiac hypertrophy yielded another patient with a sporadic de novo MRAS variant (p.Thr68Ile, c.203C>T). Herein, we describe the discovery of mutations in MRAS in patients with NS and cardiac hypertrophy, establishing MRAS as the newest NS with cardiac hypertrophy-susceptibility gene.
Collapse
Affiliation(s)
| | - J Martijn Bos
- Department of Molecular Pharmacology and Experimental Therapeutics and Windland Smith Rice Sudden Death Genomics Laboratory.,Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Heather Mason-Suares
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics and Windland Smith Rice Sudden Death Genomics Laboratory.,Department of Cardiovascular Diseases/Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota, USA
| | - Jaeger P Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics and Windland Smith Rice Sudden Death Genomics Laboratory
| | - Calum A MacRae
- Divisions of Cardiovascular Medicine and Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Karen W Gripp
- Center for Applied Clinical Genomics and.,Division of Medical Genetics, Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
| | - Raul Urrutia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Gastroenterology Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics and Windland Smith Rice Sudden Death Genomics Laboratory.,Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Diseases/Division of Heart Rhythm Services, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Blackburn PR, Tischer A, Zimmermann MT, Kemppainen JL, Sastry S, Knight Johnson AE, Cousin MA, Boczek NJ, Oliver G, Misra VK, Gavrilova RH, Lomberk G, Auton M, Urrutia R, Klee EW. A Novel Kleefstra Syndrome-associated Variant That Affects the Conserved TPL X Motif within the Ankyrin Repeat of EHMT1 Leads to Abnormal Protein Folding. J Biol Chem 2017; 292:3866-3876. [PMID: 28057753 PMCID: PMC5339767 DOI: 10.1074/jbc.m116.770545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/05/2017] [Indexed: 12/26/2022] Open
Abstract
Kleefstra syndrome (KS) (Mendelian Inheritance in Man (MIM) no. 610253), also known as 9q34 deletion syndrome, is an autosomal dominant disorder caused by haploinsufficiency of euchromatic histone methyltransferase-1 (EHMT1). The clinical phenotype of KS includes moderate to severe intellectual disability with absent speech, hypotonia, brachycephaly, congenital heart defects, and dysmorphic facial features with hypertelorism, synophrys, macroglossia, protruding tongue, and prognathism. Only a few cases of de novo missense mutations in EHMT1 giving rise to KS have been described. However, some EHMT1 variants have been described in individuals presenting with autism spectrum disorder or mild intellectual disability, suggesting that the phenotypic spectrum resulting from EHMT1 alterations may be quite broad. In this report, we describe two unrelated patients with complex medical histories consistent with KS in whom next generation sequencing identified the same novel c.2426C>T (p.P809L) missense variant in EHMT1. To examine the functional significance of this novel variant, we performed molecular dynamics simulations of the wild type and p.P809L variant, which predicted that the latter would have a propensity to misfold, leading to abnormal histone mark binding. Recombinant EHMT1 p.P809L was also studied using far UV circular dichroism spectroscopy and intrinsic protein fluorescence. These functional studies confirmed the model-based hypotheses and provided evidence for protein misfolding and aberrant target recognition as the underlying pathogenic mechanism for this novel KS-associated variant. This is the first report to suggest that missense variants in EHMT1 that lead to protein misfolding and disrupted histone mark binding can lead to KS.
Collapse
Affiliation(s)
- Patrick R Blackburn
- From the Center for Individualized Medicine and.,the Department of Health Science Research, Mayo Clinic, Jacksonville, Florida 32224
| | - Alexander Tischer
- the Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology
| | - Michael T Zimmermann
- the Department of Health Science Research, Division of Biomedical Statistics and Informatics
| | | | - Sujatha Sastry
- the Department of Pediatrics, Division of Genetics and Metabolic Disorders, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | - Amy E Knight Johnson
- the Department of Human Genetics, University of Chicago, Chicago, Illinois 60637
| | - Margot A Cousin
- the Center for Individualized Medicine.,the Department of Health Science Research
| | - Nicole J Boczek
- the Center for Individualized Medicine.,the Department of Health Science Research
| | | | - Vinod K Misra
- the Department of Pediatrics, Division of Genetics and Metabolic Disorders, Wayne State University School of Medicine, Detroit, Michigan 48201, and
| | | | - Gwen Lomberk
- the Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Matthew Auton
- the Division of Hematology, Departments of Internal Medicine and Biochemistry and Molecular Biology
| | - Raul Urrutia
- the Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905,
| | - Eric W Klee
- the Department of Clinical Genomics, .,the Center for Individualized Medicine.,the Department of Health Science Research
| |
Collapse
|