1
|
Al-Bayati ADJ, Hasoon A, Alanssari AI, Al-Thamir M, Ismael NS, Hussein MJ, Alawadi AHR. Utility of structural engineering on the monitoring of acrolein by aluminum nitride nano tube. J Mol Model 2024; 30:31. [PMID: 38196011 DOI: 10.1007/s00894-024-05827-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
CONTEXT The study delves into the adsorption process of acrolein (AC) onto both an untainted and a titanium-doped aluminum nitride nanotube (AlNNT) using computations based on density functional theory. As AC approaches the pure AlNNT, it exhibits a calculated adsorption energy (Ead) of -5.3 kcal/mol, underscoring the feeble nature of the adsorption. Furthermore, there has been very little change to the AlNNT's natural electrical characteristics. On the contrary, the introduction of titanium (Ti) enhances the performance of AlNNT, rendering it more susceptible and reactive to AC signals. Analyzing the conventional Gibbs free energy of formation computationally, we ascertain that replacing a nitrogen (N) atom with a titanium (Ti) atom within the aluminum nitride nanotube (AlNNT) structure presents a more advantageous prospect. Notably, there is a substantial alteration in the energy of adsorption (Ead) for AC as a Ti atom is incorporated onto the AlNNT surface, resulting in a shift from -5.3 to -24.6 kcal/mol. METHODS Energy calculations and geometric optimizations were conducted utilizing the dispersion-augmented B3LYP method, known as B3LYP-D. In this approach, Grimme's dispersion term, referred to as the "D" term, was employed to account for dispersion forces. The basis set adopted was 6-31 + + G** (d), and all computational procedures were executed using the GAMESS software program. Following the incorporation of titanium (Ti), this adjustment leads to a substantial enhancement in sensing capability, reaching a value of 93.7. This indicates an improved electrical conductivity of the aluminum nitride nanotube (AlNNT). Remarkably, the Ti-doped AlNNT demonstrates the ability to detect AC distinctly, even in the presence of HCN, formaldehyde, ethanol, toluene, and acetone. The swift recovery process becomes evident as AC desorbs from the surface of Ti-doped AlNNT, with a calculated recovery time of 14.0 s.
Collapse
Affiliation(s)
- Alaa Dhari Jawad Al-Bayati
- Department of Chemical Engineering and Petroleum Industries, Al- Mustaqbal University College, 51001, Hilla, Iraq
| | - Ahmed Hasoon
- Engineering Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Nadia Salim Ismael
- Department of Construction Engineering & Project Management, Al-Noor University College, Bartella, Iraq
| | | | - Ahmed H R Alawadi
- Buliding and Construction Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq.
| |
Collapse
|
2
|
Wang A, Cui J, Zhang L, Liang L, Cao Y, Liu Q. The chemical recognition of hydrogen fluoride via B 24N 24 nanocage: quantum chemical approach. J Mol Model 2023; 29:386. [PMID: 38006576 DOI: 10.1007/s00894-023-05727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/14/2023] [Indexed: 11/27/2023]
Abstract
CONTEXT Ab initio calculations were employed in this investigation to scrutinize the adsorption characteristics of a linear chain (HF)n on a BN nanocage (B24N24), wherein the chain lengths varied (n = 1, 2, 3, and 4). The overarching aim was to assess the efficiency of this setup in detecting and adhering to (HF)n under both liquid and gaseous scenarios. This study encompassed an array of aspects, encompassing adsorption energy, optimal configuration determination, work function analysis, and charge exchange assessment. Furthermore, an exploration was conducted into the impact of HF linear chain dimensions on electrical attributes and adsorption energy. According to the values of adsorption energy, the dimer form of HF adsorbed onto BN nanocages displayed the highest stability. METHODS This scrutiny was undertaken utilizing density functional theory (DFT), employing the B3LYP functional and the 6-31 + + G(d,p) basis set. Notably, the choice of the 6-31 + + G(d,p) basis set is particularly apt for delving into nanostructure analyses. The HOMO-LUMO energy gap was significantly reduced by (HF)n upon adsorption onto the nanocage, falling from 6.48 to 5.43 eV and enhancing electrical conductivity as a result. Additionally, BN nanocages may be used as sensors to find (HF)n among other environmental pollutants.
Collapse
Affiliation(s)
- Aide Wang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China.
| | - Jinde Cui
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Linhan Zhang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Lili Liang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Yuncan Cao
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Qingrun Liu
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| |
Collapse
|
3
|
Li W, Zhao T. Borophene as an carrier for mercaptopurine drug: electronic study via density-functional theory computations. J Mol Model 2023; 29:325. [PMID: 37747575 DOI: 10.1007/s00894-023-05724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
CONTEXT This paper studied MP-B36 interactions through DFT. MP molecules were observed to have a substantial tendency to be adsorbed through their N heads onto B36 at its edge, based on large adsorption energy values. The B atoms at the edges of B36 nanosheets showed higher reactivity than the internal B atoms toward MP. The electronic properties changed upon MP adsorption. The MP-B36 configurations of the highest stability underwent an energy gap reduction of 11-47%. Natural bond orbital (NBO) analysis and molecular electrostatic potential (MEP) analysis were used to evaluate the MP-B36 interaction. METHODS The configurations were subjected to geometric optimization at the TPSSH/6-31 + G(d) level of theory, at which frequency analysis was carried out to evaluate the stationary points. These configurations were neutral (Q = 0). The electronic properties of MP dramatically changed upon its interaction with B36 nanosheets. The stable configurations underwent an energy gap reduction, suggesting a chemical signal. The MP molecules were observed to be effectively adsorbed onto the B36 edge within aqueous phases. The MP-B36 configurations were estimated to have relatively large dipole moments. This demonstrated that MP-B36 systems were soluble and dispersed within solar media (e.g., water). It was concluded that B36 nanosheets could serve as efficient MP carriers in nanomedical drug delivery applications.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China
| | - Tinghu Zhao
- Department of Orthopaedics, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P.R. China.
| |
Collapse
|
4
|
Feng J, Wu J. The ability of twisted nanographene for removal of Pb 2+, Hg 2+ and Cd 2+ ions from wastewater: Computational study. J Mol Model 2023; 29:263. [PMID: 37495822 DOI: 10.1007/s00894-023-05667-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
CONTEXT Heavy metal ion removal from wastewater has become a global concern due to its extensive negative effects on human health and the environment. The density functional theory is employed to investigate the possibility of removing Pb2+, Hg2+, and Cd2+ ions from wastewater using nano-graphene. Researchers have shown that NG can efficiently remove heavy metals from media. Additionally, it was shown that the adsorption of Pb2+, Hg2+, and Cd2+ ions might reduce the large pristine NG (HOMO-LUMO) gap. METHODS HSE06 may accurately represent NG electrical characteristics. The DFT-D3 method was also used to account for Van der Waals interactions in the present study. The results demonstrated that charge transfer and binding energy remained greater in cation-NG systems with greater electron transfer rates. Pb2+, Hg2+, and Cd2+ adsorption results indicated that Egap was significantly reduced by 68%, 15%, and 21%, respectively. The Pb2+@NG complex exhibited the strongest oscillator strength. This may be explained by the enormous occupation number difference between the 2px orbital of the C atoms and the 6 s orbital of the Pb2+ cations. The greater Ebin value of Pb2+@NG is consistent with the increased predicted redshifts (199 nm). DFT (hybrid functional HSE06) studies that rely on time showed that the relevant complexes have "ligand-to-metal charge transfer" excitations. In general, it was found that Pb2+@NG had the greatest k value, binding energy, redshifts, and charge transfer rate among the complexes. The theoretical insights of this study may influence experimental efforts to identify NG-based compounds that are effective and efficient at removing pollutants from wastewater.
Collapse
Affiliation(s)
- Jie Feng
- National Center for Occupational Safety and Health, NHC, Beijing, 102308, China
| | - Jianfu Wu
- Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
5
|
Abbas AK, Kamona SMH, Ghazuan T, Hashim FS, Kamal HR, Abed HN, Zabibah RS, Wu J. Identification and sensing of hydrogen fluoride (HF) on aluminum phosphide (Al 24P 24) nanocage in both gas and water phases: electronic study via density-functional theory computations. J Mol Model 2023; 29:216. [PMID: 37368127 DOI: 10.1007/s00894-023-05617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
CONTEXT Hydrogen fluoride (HF) is extensively present in environmental and industrial pollutants. It may harm the health of humans and animals. This work evaluated the adsorption of an (HF)n linear chain (n = 1, 2, 3, and 4) onto an AlP nanocage through ab initio calculations for the evaluation of its performance in sensing and monitoring (HF)n within aqueous and gaseous media. METHODS The present work adopted density functional theory (DFT) at the 6-311 G (d, p) basis set to analyze (HF)n linear chain adsorption onto AlP nanocages with the B3LYP functional. This paper examined the adsorption energy, configuration optimization, work function, and charge transfer. In addition, the contributions of the HF linear chain size to electronic properties and adsorption energy were measured. The dimer form of HF on the surface of AlP nanocages was found to have the highest stability based on the adsorption energy values. Once (HF)n was adsorbed onto the nanocage, the HOMO-LUMO energy gap experienced a large reduction from 3.87 to 3.03 eV, enhancing electrical conductivity. In addition, AlP nanocages may serve in the sensing of (HF)n under multiple environmental pollutants.
Collapse
Affiliation(s)
- Ali Kareem Abbas
- Intelligent Medical Systems Department, Al-Mustaqbal University College, Hillah, Babylon, 51001, Iraq
| | | | - Tiba Ghazuan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Furqan S Hashim
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Hiba Rafid Kamal
- Department of Anesthesia Techniques, AlNoor University College, Nineveh, Iraq
| | - Hussein Najm Abed
- Department of Medical Laboratory Techniques, Altoosi University College, Najaf, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Jianfu Wu
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Alharthy KM, Fadhil Alsaffar M, Althurwi HN, Albaqami FF, Reidh Abass R, Majid Alawi A, Salah Jalal S, Tabassum S, Zhang H, Peng W. Boron nitride nanocage as drug delivery systems for chloroquine, as an effective drug for treatment of coronavirus disease: A DFT study. INORG CHEM COMMUN 2023; 150:110482. [PMID: 36777967 PMCID: PMC9899703 DOI: 10.1016/j.inoche.2023.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Research has shown that chloroquine (CQ) can effectively help control COVID-19 infection. B24N24 nanocage is a drug delivery system. Thus, through density functional theory, the present study analyzed pristine nanocage-CQ interaction and CQ interaction with Si- and Al -doped nanocage. The findings revealed that nanocage doping, particularly with Si and Al, yields more satisfactory drug delivery for CQ due to their greater electronic and energetic characteristics with CQ.
Collapse
Affiliation(s)
- Khalid M Alharthy
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Marwa Fadhil Alsaffar
- Medical Laboratories Techniques Department, AL-Mustaqbal University College, 51001 Hillah, Babil, Iraq
| | - Hassan N Althurwi
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Faisal F Albaqami
- Pharmacology and Toxicology Department, College of Pharmacy, Prince Sattam bin Abdulaziz University, AlKharj 11942, Saudi Arabia
| | - Russul Reidh Abass
- Al-Farahidi University, Medical Lab. Techniques department, College of Medical Techology, Iraq
| | - Aisha Majid Alawi
- Medical Laboratory Techniques Department, Al-Nisour University College, Baghdad, Iraq
| | - Sarah Salah Jalal
- College of nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Shazia Tabassum
- Department of English, College of Science and Arts, Rejal Alma'a Campus, King Khalid University, Abha, Saudi Arabia
| | - Hao Zhang
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wang Peng
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
7
|
Wang A, Cui J, Zhang L, Liang L, Cao Y, Liu Q. Monitoring of COS, SO 2, H 2S, and CS 2 gases by Al 24P 24 nanoclusters: a DFT inspection. J Mol Model 2023; 29:98. [PMID: 36922423 DOI: 10.1007/s00894-023-05467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/03/2023] [Indexed: 03/18/2023]
Abstract
Through utilizing density functional theory (DFT), the current work investigates the potential uses of Al24P24 fullerene for detecting CS2, H2S, SO2, and COS. The interaction order for the stability of these gases was SO2 > H2S > COS > CS2. The moment of electric dipole and molecules' adsorption energy seems correlated. Al24P24 fullerene is regarded as an electronic sensor of the Ф-type for detecting SO2 and CS2. According to the findings, CS2 and SO2 might act as Al24P24 fullerenes when H2S is present. Nevertheless, we cannot presume it to be a COS and H2S sensor of Ф-type. At room temperature, the fullerene of Al24P24 has a quick recovery time of 0.50 μs and 0.17 s in CS2 and SO2 desorption from the surface. It can thus be inferred that it has the ability to function in moist media.
Collapse
Affiliation(s)
- Aide Wang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China.
| | - Jinde Cui
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Linhan Zhang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Lili Liang
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Yuncan Cao
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| | - Qingrun Liu
- Zibo Luray Fine Chemicals Co., Ltd, Zibo, Shandong, 255000, China
| |
Collapse
|
8
|
Al-Qargholi B, Tabassum S, Abbass R, Al-Saidi DN, Abdulfadhil Gatea M, Hameed Fazaa A, Krishna Saraswat S, Petrosian S, Li W. Nanosheets (CC-BC3-C3N) as an carrier for favipiravir drug: A density functional theory study. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Sensing of Acetaminophen Drug Using Silicon-Doped Graphdiyne: a DFT Inspection. Appl Biochem Biotechnol 2023; 195:610-622. [PMID: 36114923 DOI: 10.1007/s12010-022-04140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Using first-principles calculations, we studied the electronic properties of graphdiyne (GDY) nanosheet and its Si-doped counterpart, SiGDY. Both GDY and SiGDY sheet surfaces were examined for acetaminophen (AP) drug adsorption using adsorption energy, charge transfer, and change in electrical conductivity (as indicators). As shown in this study, pure GDY has little affinity for AP. In specific, only 7.83 percent of the GDY surface's bandwidth energy changed after AP adsorption. On SiGDY, AP has a gaseous energy value of - 18.75 kcal/mol, as well as an aqueous energy value of - 49.39 kcal/mol. The water-phase solubility of the prescribed medications is determined using their solvation energy value. These charges are transferred between AP and the SiGDY sheet, which is extremely positively charged, giving AP the necessary binding energy. After AP adsorption, the electrical conductivity of SiGDY was increased by approximately 19.01 percent.
Collapse
|
10
|
Kadhim MM, Waleed I, Talib Abed Z, Hachim SK, Abdullaha SA, Mahdi Rheima A. DFT investigation for the adsorption of acrolein onto the surface of pristine and doped C70: NBO and QTAIM analyses. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Silva ALP, Silva ACA, Varela Júnior JDJG. Putrescine adsorption on pristine and Cu-decorated B12N12 nanocages: A density functional theory study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Yang M, Jin H, Sun Z, Gui R. Monoelemental two-dimensional boron nanomaterials beyond theoretical simulations: From experimental preparation, functionalized modification to practical applications. Adv Colloid Interface Sci 2022; 304:102669. [PMID: 35429719 DOI: 10.1016/j.cis.2022.102669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/01/2022]
Abstract
During the past decade, there is an explosive growth of theoretical and computational studies on 2D boron-based nanomaterials. In terms of extensive predictions from theoretical simulations, borophene, boron nanosheets and 2D boron derivatives show excellent structural, electronic, photonic and nonlinear optical characteristics, and potential applications in a wide range of fields. In recent years, previous studies have reported the successful experimental preparations, superior properties, multi-functionalized modifications of various 2D boron and its derivatives, which show many practical applications in significant fields. To further promote the ever-increasing experimental studies, this present review systematically summarizes recent progress on experimental preparation methods, functionalized modification strategies and practical applications of 2D boron-based nanomaterials and multifunctional derivatives. Firstly, this review summarizes the experimental preparation methods, including molecular beam epitaxy, chemical vapor deposition, liquid-phase exfoliation, chemical reaction, and other auxiliary methods. Then, various strategies for functionalized modification are introduced overall, focusing on borophene derivatives, boron-based nanosheets, atom-introduced, chemically-functionalized borophene and boron nanosheets, borophene or boron nanosheet-based heterostructures, and other functionalized 2D boron nanomaterials. Subsequently, various potential applications are discussed in detail, involving energy storage, catalysis conversion, photonics, optoelectronics, sensors, bio-imaging, biomedicine therapy, and adsorption. We comment the state-of-the-art related studies concisely, and also discuss the current status, probable challenges and perspectives rationally. This review is timely, comprehensive, in-depth and highly attractive for scientists from multiple disciplines and scientific fields, and can facilitate further development of advanced functional low-dimensional nanomaterials and multi-functionalized systems toward high-performance practical applications in significant fields.
Collapse
|
13
|
Bhavyashree M, Rondiya SR, Hareesh K. Exploring the emerging applications of the advanced 2-dimensional material borophene with its unique properties. RSC Adv 2022; 12:12166-12192. [PMID: 35481099 PMCID: PMC9023120 DOI: 10.1039/d2ra00677d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Borophene, a crystalline allotrope of monolayer boron, with a combination of triangular lattice and hexagonal holes, has stimulated wide interest in 2-dimensional materials and their applications. Although their properties are theoretically confirmed, they are yet to be explored and confirmed experimentally. In this review article, we present advancements in research on borophene, its synthesis, and unique properties, including its advantages for various applications with theoretical predictions. The uniqueness of borophene over graphene and other 2-dimensional (2D) materials is also highlighted along with their various structural stabilities. The strategy for its theoretical simulations, leading to the experimental synthesis, could also be helpful for the exploration of many newer 2D materials.
Collapse
Affiliation(s)
- M Bhavyashree
- School of Applied Sciences (Physics), REVA University Bengaluru-560064 India
- Department of Physics, R.V. College of Engineering Bengaluru-560059 India
- Center of Excellence on Macro-Electronics, Interdisciplinary Research Center, R.V. College of Engineering Bengaluru-560059 India
| | - Sachin R Rondiya
- School of Chemistry, Cardiff University Cardiff CF10 3AT Wales UK
| | - K Hareesh
- School of Applied Sciences (Physics), REVA University Bengaluru-560064 India
- Department of Physics, R.V. College of Engineering Bengaluru-560059 India
- Center of Excellence on Macro-Electronics, Interdisciplinary Research Center, R.V. College of Engineering Bengaluru-560059 India
| |
Collapse
|
14
|
Yao C, Xiang F, Xu Z. Metal oxide nanocage as drug delivery systems for Favipiravir, as an effective drug for the treatment of COVID-19: a computational study. J Mol Model 2022; 28:64. [PMID: 35182223 PMCID: PMC8857396 DOI: 10.1007/s00894-022-05054-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 12/05/2022]
Abstract
This paper is a summary of research that looks at the potential of fullerene-like (MO)12 nanoclusters (NCs) in drug-carrying systems using density functional theory. Favipiravir/Zn12O12 (- 34.80 kcal/mol), Favipiravir/Mg12O12 (- 34.98 kcal/mol), and Favipiravir/Be12O12 (- 30.22 kcal/mol) were rated in order of drug adsorption degrees. As a result, Favipiravir attachment to (MgO)12 and (ZnO)12 might be simple, increasing Favipiravir loading efficiency. In addition, the quantum theory of atoms in molecules (QTAIM) assessment was utilized to look at the interactions between molecules. The FMO, ESP, NBO, and Eads reactivity patterns were shown to be in excellent agreement with the QTAIM data. The electrostatic properties of the system with the biggest positive charge on the M atom and the largest Eads were shown to be the best. This system was shown to be the best attraction site for nucleophilic agents. The findings show that (MgO)12 and (ZnO)12 have great carrier potential and may be used in medication delivery.
Collapse
Affiliation(s)
- Chunchun Yao
- Department of Pharmacy, Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Feng Xiang
- Department of Pharmacy, Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhangyi Xu
- Department of Pharmacy, Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
15
|
Hussnain M, Shehzad RA, Muhammad S, Iqbal J, Al-Sehemi AG, Alarfaji SS, Ayub K, Yaseen M. Shedding light on the optical and nonlinear optical properties of superalkali-doped borophene. J Mol Model 2022; 28:46. [PMID: 35080664 DOI: 10.1007/s00894-022-05032-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
The present investigation highlights the two-dimensional design of several interesting superalkali-doped borophene derivatives for efficient nonlinear optics (NLO). The combination effects and resulting NLO responses of borophene (B36) and superalkali units (Li3O) were evaluated by orienting superalkali clusters at various sites, such as the hub, rim, and bridge, around an B36 molecule. The charge analysis was characterized by frontier and natural bond orbital analyses, a narrowed HOMO-LUMO bandgap and greater intramolecular charge transfers. Molecular electrostatic potential surfaces demonstrated enhanced optoelectronic features of these complexes that are viable due to Li3O adsorption. Singly doped and doubly doped complexes were considered, and their NLO properties were calculated. Bandgap energy was reduced approximately threefold when doped with two Li3O. As a considerably high figure of merit, first hyperpolarizability (βo) values of up to five digits (including 10,611 au for complex A) prove that these systems can be utilized as promising candidates in various NLO applications.
Collapse
Affiliation(s)
- Muhammad Hussnain
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rao Aqil Shehzad
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan. .,Punjab Bio-Energy Institute, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Saleh S Alarfaji
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Khurshid Ayub
- Department of Chemistry, COMSAT University, KPK, Abbottabad CampusAbbottabad, 22060, Pakistan
| | - Muhammad Yaseen
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| |
Collapse
|
16
|
Zhao D, Li Y, Xu M, Li Z, Zhang H, Yu L. Identification of sulfur gases (environmental pollution) by BeO fullerenes: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Ma S, Yi L, Wu Z. Metal oxide (BeO-MgO-ZnO) nanoclusters as drug delivery systems for isoniazid anticancer drug: a DFT study. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1986162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Songhe Ma
- General Surgery Department of Qichun People's Hospital, Qichun, Hubei, China
| | - Le Yi
- General Surgery Department of Qichun People's Hospital, Qichun, Hubei, China
| | - Zhiquan Wu
- Department of Oncology, Qichun People's Hospital, Qichun, Hubei, China
| |
Collapse
|
18
|
Li W, Zhao T. Hydroxyurea anticancer drug adsorption on the pristine and doped C70 fullerene as potential carriers for drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Zhao J, Li W, Aslanzadeh SA. A DFT study on the adsorption of DNA nucleobases on the C 3N nanotubes as a sequencer. J Mol Model 2021; 27:57. [PMID: 33515354 DOI: 10.1007/s00894-021-04672-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Deoxyribonucleic acid (DNA) sequencing is a crucial issue for the cure of different kinds of diseases. Here, we computationally explored the effect of DNA nucleobases on the electronic properties and electrical conductivity of a zigzag (10,0) C3N nanotube (C3NNT) at B3LYP-gCP-D3 level of theory. Our calculations revealed that the binding energy of nucleobases shows the order of guanine (G) > cytosine (C) > thymine (T) > adenine (A). Based on the energy decomposition analysis (EDA), the G, C, and T strongly interact with the C3NNT, but the A nucleobase adsorbed mainly via electrostatic attraction and dispersion forces. We exposed that the nucleobase size and its carbonyl group determine its adsorption behavior. The DNA nucleobase adsorption meaningfully increased the electrical conductivity of C3NNT. The C3NNT sensing response toward G, C, T, or A was predicted to be 131, 66, 60, or 10. Therefore, the C3NNT might be applied to selectively detect the G, C, T, and A. Our findings expose the usefulness of C3NNT as a next-generation DNA sequencer, suggesting new leads for future progresses in sustainable designs, superior sensing architectures, and bioelectronics.
Collapse
Affiliation(s)
- Jie Zhao
- College of Chemical Engineering, Chongqing Chemical Industry Vocational College, Chongqing, 401228, China
| | - Wenli Li
- College of Environmental Quality Testing, Chongqing Chemical Industry Vocational College, Chongqing, 401228, China.
| | - Saeed Amir Aslanzadeh
- Department of Science, Faculty of Enghelab Islami, Tehran Branch, Technical and Vocational University (TVU), Tehran, Iran
| |
Collapse
|
20
|
Keyvanfard M, Karimi-Maleh H, Karimi F, Opoku F, Kiarii EM, Govender PP, Taghavi M, Fu L, Aygun A, Sen F. Electro-catalytic amplified sensor for determination of N-acetylcysteine in the presence of theophylline confirmed by experimental coupled theoretical investigation. Sci Rep 2021; 11:1006. [PMID: 33441706 PMCID: PMC7806823 DOI: 10.1038/s41598-020-79872-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023] Open
Abstract
The 1,l/-bis(2-phenylethan-1-ol)ferrocene, 1-butyl-3-methylimidazolium hexafluoro phosphate (BMPF6) and NiO-SWCNTs were used to modify carbon paste electrode (BPOFc/BMPF6/NiO-SWCNTs/CPE), which could act as an electro-catalytic tool for the analysis of N-acetylcysteine in this work. The BPOFc/BMPF6/NiO-SWCNTs/CPE with high electrical conductivity showed two completely separate signals with oxidation potentials of 432 and 970 mV for the first time that is sufficient for the determination of N-acetylcysteine in the presence of theophylline. The BPOFc/BMPF6/NiO-SWCNTs/CPE showed linear dynamic ranges of 0.02–300.0 μM and 1.0–350.0 μM with the detection limit of ~ 8.0 nM and 0.6 μM for the measurement of N-acetylcysteine and theophylline, respectively. In the second part, understanding the nature of interaction, quantum conductance modulation, electronic properties, charge density, and adsorption behavior of N-acetylcysteine on NiO–SWCNTs surface from first-principle studies through the use of theoretical investigation is vital for designing high-performance sensor materials. The N-acetylcysteine molecule was chemisorbed on the NiO–SWCNTs surface by suitable adsorption energies (− 1.102 to − 5.042 eV) and reasonable charge transfer between N-acetylcysteine and NiO–SWCNTs.
Collapse
Affiliation(s)
- Mohsen Keyvanfard
- Department of Chemistry, Majlesi Branch, Islamic Azad University, Majlesi, Iran.
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, People's Republic of China. .,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran. .,Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| | - Fatemeh Karimi
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu, 611731, People's Republic of China. .,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Francis Opoku
- Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Ephraim Muriithi Kiarii
- Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Poomani Penny Govender
- Department of Chemistry, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Mehdi Taghavi
- Polymer Chemistry Research Laboratory, Faculty of Science, Shahid Chamran University, 61357-43337, Ahvaz, Iran
| | - Li Fu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| |
Collapse
|
21
|
B36 bowl-like structure as nanocarrier for sulfonamides: a theoretical study. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Quasi-planar B 36 boron cluster: a new potential basis for ammonia detection. J Mol Model 2020; 26:263. [PMID: 32909082 DOI: 10.1007/s00894-020-04486-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Detection of NH3 at a trace level is nowadays of great importance. Here, we investigate the reactivity and sensitivity of a B36 borophene toward NH3 gas employing DFT calculations. The energetic results point out that the adsorption process strongly depends on the orientation of NH3 relative to the B36 sheet. An NH3 molecule preferentially interacts via its N-head with a B atom of the B36 with a change of enthalpy of - 90.5 kJ/mol at room temperature and 1 atm. Mulliken charges analysis results reveal that approximately 0.35 |e| transfers from NH3 to the B36, leaving partially positive NH3. We found that the B36 electronic properties are meaningfully sensitive to the NH3 gas, and it may be a sign of further usage of B36 as a potential NH3 gas sensor. The density of state analysis shows that the B36 gap is expressively decreased from 1.55 to 1.35 eV, increasing its electrical conductance.
Collapse
|
23
|
Jha RK, Nanda A, Bhat N. Boron nanostructures obtained via ultrasonic irradiation for high performance chemiresistive methane sensors. NANOSCALE ADVANCES 2020; 2:1837-1842. [PMID: 36132512 PMCID: PMC9417492 DOI: 10.1039/c9na00749k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
We report on a chemiresistive gas sensor using boron nanostructures as the sensing layer, to detect methane gas down to 50 ppm. The sensor showed an excellent response of 43.5-153.1% for a methane concentration of 50 ppm to 105 ppm, with linear behaviour and good response and recovery time. The stability, repeatability, reproducibility, and shelf life of the sensor are promising for next generation methane gas detection.
Collapse
Affiliation(s)
- Ravindra Kumar Jha
- Nano-Devices and Sensors Laboratory, Centre for Nano Science and Engineering, Indian Institute of Science Bangalore India-560012
| | - Aman Nanda
- Nano-Devices and Sensors Laboratory, Centre for Nano Science and Engineering, Indian Institute of Science Bangalore India-560012
| | - Navakanta Bhat
- Nano-Devices and Sensors Laboratory, Centre for Nano Science and Engineering, Indian Institute of Science Bangalore India-560012
| |
Collapse
|
24
|
Zhang X, Asadi H. High cell voltage and storage capacity of graphyne as the anode of K-ion batteries: computational studies. J Mol Model 2020; 26:141. [PMID: 32415363 DOI: 10.1007/s00894-020-04404-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
Li-ion batteries have many advantages, but these batteries suffer from safety problems, short lifetime, and a high cost. Nontoxicity, wide availability, and low cost of potassium offer the K-ion batteries (KIB) as a replacement to the Li-ion batteries. The B3LYP-gCP-D3 approach of density functional theory is applied to examine the probable application of graphyne in the anode of KIBs. It is found that a triangular hollow is the most favorable site for the K or K+ adsorption, releasing energies about 16.3 or 41.1 kcal/mol. The released energies for K and K+ have been reported to be about 16.8 and 34.2 kcal/mol for graphene sheet, respectively, which generate a cell voltage of 0.75 V. A high K storage capacity of 241 mAh/g and cell voltage of 1.08 V are predicted for graphyne. The maximum barrier energies for the displacement of K or K+ on the surface of graphyne are computed to be 2.8 (~ 3.4 for K/graphene) or 5.6 kcal/mol, representing an excellent ion mobility due to the low energy barriers. Consequently, we suggest the graphyne sheet as an anode material for the KIBs owing to its high diffusion ability, high cell voltage, and high storage capacity.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- Department of Electronic Information & Physics, Changzhi University, Changzhi, 046011, Shanxi, China.
| | - Hamid Asadi
- Department of Materials Engineering, Payame Noor University, Tehran, Iran
| |
Collapse
|
25
|
Allal H, Belhocine Y, Rahali S, Damous M, Ammouchi N. Structural, electronic, and energetic investigations of acrolein adsorption on B 36 borophene nanosheet: a dispersion-corrected DFT insight. J Mol Model 2020; 26:128. [PMID: 32388759 DOI: 10.1007/s00894-020-04388-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
The adsorption of acrolein (AC) onto the surface of B36 borophene nanosheet was studied using dispersion-corrected density functional theory (DFT). The structural and electronic properties were scrutinized by several quantum chemical parameters such as HOMO-LUMO gap, condensed Fukui function, molecular electrostatic potential (ESP), and the density of states (DOS). The non-covalent interactions (NCI) were explored by combined reduced density gradient (RDG-NCI) and energy decomposition analysis (EDA) techniques. It was found that the adsorption of acrolein on both convex and concave surfaces of borophene is mainly governed by van der Waals interactions. Our calculations showed that the adsorption energy is strengthened and favored when multiple acrolein molecules adsorb on the edge sides of borophene through their terminal carbonyl oxygen atom. Furthermore, the calculated HOMO-LUMO energy gaps were significantly reduced upon adsorption affecting, therefore, the electrical conductance of borophene. These results should be useful in designing acrolein sensors.
Collapse
Affiliation(s)
- Hamza Allal
- Department of Technology, Faculty of Technology, 20 August 1955 University of Skikda, P.O. Box 26, El Hadaik Road, 21000, Skikda, Algeria.
| | - Youghourta Belhocine
- Department of Petrochemical and Process Engineering, 20 August 1955 University of Skikda, P.O. Box 26, El Hadaik Road, 21000, Skikda, Algeria
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, P.O. 53, Buraydah, Saudi Arabia
| | - Maamar Damous
- Department of Petrochemical and Process Engineering, 20 August 1955 University of Skikda, P.O. Box 26, El Hadaik Road, 21000, Skikda, Algeria.,Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000, Constantine, Algeria
| | - Nesrine Ammouchi
- Department of Technology, Faculty of Technology, 20 August 1955 University of Skikda, P.O. Box 26, El Hadaik Road, 21000, Skikda, Algeria
| |
Collapse
|
26
|
Xiao C, Ma K, Cai G, Zhang X, Vessally E. Borophene as an electronic sensor for metronidazole drug: A computational study. J Mol Graph Model 2020; 96:107539. [DOI: 10.1016/j.jmgm.2020.107539] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
|
27
|
Quantum chemical description of formaldehyde (HCHO), acetaldehyde (CH3CHO) and propanal (CH3CH2CHO) pollutants adsorption behaviors onto the bowl-shaped B36 nanosheet. ADSORPTION 2017. [DOI: 10.1007/s10450-017-9913-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Borophene: A novel boron sheet with a hexagonal vacancy offering high sensitivity for hydrogen cyanide detection. COMPUT THEOR CHEM 2017. [DOI: 10.1016/j.comptc.2017.06.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Shakerzadeh E. Quantum chemical assessment of the adsorption behavior of fluorouracil as an anticancer drug on the B 36 nanosheet. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
|
31
|
Nagarajan V, Chandiramouli R. Sensing properties of monolayer borophane nanosheet towards alcohol vapors: A first-principles study. J Mol Graph Model 2017; 73:208-216. [DOI: 10.1016/j.jmgm.2017.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
|
32
|
Moradi M, Vahabi V, Bodaghi A. Computational study on the fullerene-like B 40 borospherene properties and its interaction with ammonia. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.07.147] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|