1
|
Yukawa T, Bamba T, Guirimand G, Matsuda M, Hasunuma T, Kondo A. Optimization of 1,2,4-butanetriol production from xylose in Saccharomyces cerevisiae by metabolic engineering of NADH/NADPH balance. Biotechnol Bioeng 2020; 118:175-185. [PMID: 32902873 DOI: 10.1002/bit.27560] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 01/02/2023]
Abstract
1,2,4-Butanetriol (BT) is used as a precursor for the synthesis of various pharmaceuticals and the energetic plasticizer 1,2,4-butanetriol trinitrate. In Saccharomyces cerevisiae, BT is biosynthesized from xylose via heterologous four enzymatic reactions catalyzed by xylose dehydrogenase, xylonate dehydratase, 2-ketoacid decarboxylase, and alcohol dehydrogenase. We here aimed to improve the BT yield in S. cerevisiae by genetic engineering. First, the amount of the key intermediate 2-keto-3-deoxy-xylonate as described previously was successfully reduced in 41% by multiple integrations of Lactococcus lactis 2-ketoacid decarboxylase gene kdcA into the yeast genome. Since the heterologous BT synthetic pathway is independent of yeast native metabolism, this manipulation has led to NADH/NADPH imbalance and deficiency during BT production. Overexpression of the NADH kinase POS5Δ17 lacking the mitochondrial targeting sequence to relieve NADH/NADPH imbalance resulted in the BT titer of 2.2 g/L (31% molar yield). Feeding low concentrations of glucose and xylose to support the supply of NADH resulted in BT titer of 6.6 g/L with (57% molar yield). Collectively, improving the NADH/NADPH ratio and supply from glucose are essential for the construction of a xylose pathway, such as the BT synthetic pathway, independent of native yeast metabolism.
Collapse
Affiliation(s)
- Takahiro Yukawa
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takahiro Bamba
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Gregory Guirimand
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Biomolécules et Biotechnologies Végétales, EA 2106, Département of Agronomie, productions animale et végétale et agro-alimentaire, Université de Tours, Tours, France.,LE STUDIUM, Loire Valley Institute for Advanced Studies, Orléans, France
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.,Engineering Biology Research Center, Kobe University, Kobe, Japan.,Biomass Engineering Program, RIKEN, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Pei L, Dong K, Tang Y, Zhang B, Yu C, Li W. Theoretical studies of the decomposition mechanisms of 1,2,4-butanetriol trinitrate. J Mol Model 2017; 24:6. [DOI: 10.1007/s00894-017-3541-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022]
|