1
|
Dashtbin S, Razavi S, Ganjali Koli M, Barneh F, Ekhtiari-Sadegh S, Akbari R, Irajian G, Pooshang Bagheri K. Intracellular bactericidal activity and action mechanism of MDP1 antimicrobial peptide against VRSA and MRSA in human endothelial cells. Front Microbiol 2024; 15:1416995. [PMID: 39252832 PMCID: PMC11381295 DOI: 10.3389/fmicb.2024.1416995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Staphylococcus aureus is a prominent cause of postoperative infections, often persisting within host cells, leading to chronic infections. Conventional antibiotics struggle to eliminate intracellular S. aureus due to poor cell penetration. Antimicrobial peptides are a new hope for tackling intracellular bacteria. Accordingly, this study examines the antimicrobial peptide MDP1, derived from melittin, for its efficacy against intracellular S. aureus. Methods In this study, the physiochemical properties (Prediction of three-dimensional structure, circular dichroism and helical wheel projection analysis) were investigated. Extracellular antibacterial activity and cytotoxicity of MDP1 were also assessed. The mechanism of interaction of MDP1 with S. aureus was evaluated by molecular dynamic simulation, atomic force and confocal microscopy. Bacterial internalization into an endothelial cell model was confirmed through culture and transmission electron microscopy. The effect of the peptide on intracellular bacteria was investigated by culture and epi-fluorescence microscopy. Results and discussion 3D structural prediction proved the conformation of MDP1 as an α-helix peptide. Helical-wheel projection analysis indicated the proper orientation of hydrophobic amino acid residues for membrane interaction. CD spectroscopy of MDP1 showed that MDP1 in SDS 10 and 30 mM adopted 87 and 91% helical conformation. Atomic force and confocal microscopy assessments as well as molecular dynamics studies revealed the peptide-bacterial membrane interaction. MDP1, at the concentration of 0.32 μg mL-1, demonstrated a fold reduction of 21.7 ± 1.8, 1.7 ± 0.2, and 7.3 ± 0.8 in intracellular bacterial load for ATCC, VRSA, and MRSA, respectively. Molecular dynamics results demonstrate a preferential interaction of MDP1 with POPG/POPE membranes, primarily driven by electrostatic forces and hydrogen bonding. In POPC systems, two out of four MDP1 interacted effectively, while all four MDP1 engaged with POPG/POPE membranes. Gathering all data together, MDP1 is efficacious in the reduction of intracellular VRSA and MRSA proved by culture and epi-fluorescent microscopy although further studies should be performed to increase the intracellular activity of MDP1.
Collapse
Affiliation(s)
- Shirin Dashtbin
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mokhtar Ganjali Koli
- Department of Chemistry, University of Kurdistan, Sanandaj, Iran
- Computational Chemistry Laboratory, Kask Afrand Exire Ltd., Sanandaj, Iran
| | - Farnoosh Barneh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sarvenaz Ekhtiari-Sadegh
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Akbari
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Gholamreza Irajian
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Sharma P, Vaiwala R, Gopinath AK, Chockalingam R, Ayappa KG. Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7791-7811. [PMID: 38451026 DOI: 10.1021/acs.langmuir.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Amar Krishna Gopinath
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rajalakshmi Chockalingam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| |
Collapse
|
3
|
Patra P, Banerjee R, Chakrabarti J. Effect of biphosphate salt on dipalmitoylphosphatidylcholine bilayer deformation by Tat polypeptide. Biopolymers 2022; 113:e23518. [PMID: 35621373 DOI: 10.1002/bip.23518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022]
Abstract
Translocation of positively charged cell penetrating peptides (CPP) through cell membrane is important in drug delivery. Here we report all-atom molecular dynamics simulations to investigate how a biphosphate salt in a solvent affects the interaction of a CPP, HIV-1 Tat peptide with model dipalmitoylphosphatidylcholine (DPPC) lipid bilayer. Tat peptide has a large number of basic arginines and a couple of polar glutamines. We observe that in absence of salt, the basic residues of the polypeptide get localized in the vicinity of the membrane without altering the bilayer properties much; polypeptide induce local thinning of the bilayer membrane at the area of localization. In presence of biphosphate salt, the basic residues, dressed by the biphosphate ions, are repelled by the phosphate head groups of the lipid molecules. However, polar glutamine prefers to stay in the vicinity of the bilayer. This leads to larger local bilayer thickness at the contact point by the polar residue and non-uniform bilayer thickness profile. The thickness deformation of bilayer structure disappears upon mutating the polar residue, suggesting importance of the polar residue in bilayer deformation. Our studies point to control bilayer deformation by appropriate peptide sequence and solvent conditions.
Collapse
Affiliation(s)
- Piya Patra
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Raja Banerjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, West Bengal, India
| | - Jaydeb Chakrabarti
- Department of Chemical, Biological and Macro-Molecular Sciences, Thematic Unit of Excellence on Computational Materials Science and Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata, West Bengal, India
| |
Collapse
|
4
|
Priyadarshini D, Ivica J, Separovic F, de Planque MRR. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording. Biophys Chem 2022; 281:106721. [PMID: 34808479 DOI: 10.1016/j.bpc.2021.106721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
Many antimicrobial peptides (AMPs) are cationic host defence peptides (HDPs) that interact with microbial membranes. This ability may lead to implementation of AMPs as therapeutics to overcome the wide-spread antibiotic resistance problem as the affected bacteria may not be able to recover from membrane lysis types of attack. AMP interactions with lipid bilayer membranes are typically explained through three mechanisms, i.e., barrel-stave pore, toroidal pore and carpet models. Electrical bilayer recording is a relatively simple and sensitive technique that is able to capture the nanoscale perturbations caused by the AMPs in the bilayer membranes. Molecular-level understanding of the behaviour of AMPs in relation to lipid bilayers mimicking bacterial and human cell membranes is essential for their development as novel therapeutic agents that are capable of targeted action against disease causing micro-organisms. The effects of four AMPs (aurein 1.2, caerin 1.1, citropin 1.1 and maculatin 1.1 from the skin secretions of Australian tree frogs) and the toxin melittin (found in the venom of honeybees) on two different phospholipid membranes were studied using the electrical bilayer recording technique. Bilayers composed of zwitterionic (DPhPC) and anionic (DPhPC/POPG) lipids were used to mimic the charge of eukaryotic and prokaryotic cell membranes, respectively, so as to determine the corresponding interaction mechanisms for different concentrations of the peptide. Analysis of the dataset corresponding to the four frog AMPs, as well as the resulting dataset corresponding to the bee toxin, confirms the proposed peptide-bilayer interaction models in existing publications and demonstrates the importance of using appropriate bilayer compositions and peptide concentrations for AMP studies.
Collapse
Affiliation(s)
- Diana Priyadarshini
- Electronics and Computer Science, Faculty of Physical & Applied Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Josip Ivica
- Electronics and Computer Science, Faculty of Physical & Applied Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Maurits R R de Planque
- Electronics and Computer Science, Faculty of Physical & Applied Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
5
|
Apostolopoulos V, Bojarska J, Chai TT, Elnagdy S, Kaczmarek K, Matsoukas J, New R, Parang K, Lopez OP, Parhiz H, Perera CO, Pickholz M, Remko M, Saviano M, Skwarczynski M, Tang Y, Wolf WM, Yoshiya T, Zabrocki J, Zielenkiewicz P, AlKhazindar M, Barriga V, Kelaidonis K, Sarasia EM, Toth I. A Global Review on Short Peptides: Frontiers and Perspectives. Molecules 2021; 26:430. [PMID: 33467522 PMCID: PMC7830668 DOI: 10.3390/molecules26020430] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | - Joanna Bojarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Tsun-Thai Chai
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia;
| | - Sherif Elnagdy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - John Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
- NewDrug, Patras Science Park, 26500 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Roger New
- Vaxcine (UK) Ltd., c/o London Bioscience Innovation Centre, London NW1 0NH, UK;
- Faculty of Science & Technology, Middlesex University, The Burroughs, London NW4 4BT, UK;
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA;
| | - Octavio Paredes Lopez
- Centro de Investigación y de Estudios Avanzados del IPN, Departamento de Biotecnología y Bioquímica, Irapuato 36824, Guanajuato, Mexico;
| | - Hamideh Parhiz
- Infectious Disease Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6073, USA;
| | - Conrad O. Perera
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand;
| | - Monica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina;
- Instituto de Física de Buenos Aires (IFIBA, UBA-CONICET), Argentina, Buenos Aires 1428, Argentina
| | - Milan Remko
- Remedika, Luzna 9, 85104 Bratislava, Slovakia;
| | - Michele Saviano
- Institute of Crystallography (CNR), Via Amendola 122/o, 70126 Bari, Italy;
| | - Mariusz Skwarczynski
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
| | - Yefeng Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (MOE), School of Pharma Ceutical Sciences, Tsinghua University, Beijing 100084, China;
| | - Wojciech M. Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | | | - Janusz Zabrocki
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland; (K.K.); (J.Z.)
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland;
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Maha AlKhazindar
- Botany and Microbiology Department, Faculty of Science, Cairo University, Gamaa St., Giza 12613, Egypt; (S.E.); (M.A.)
| | - Vanessa Barriga
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.A.); (J.M.); (V.B.)
| | | | | | - Istvan Toth
- School of Chemistry & Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (M.S.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
6
|
Kholina EG, Kovalenko IB, Bozdaganyan ME, Strakhovskaya MG, Orekhov PS. Cationic Antiseptics Facilitate Pore Formation in Model Bacterial Membranes. J Phys Chem B 2020; 124:8593-8600. [PMID: 32896131 DOI: 10.1021/acs.jpcb.0c07212] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antiseptics are an essential line of defense against bacterial and viral infections in modern medical practice. Many of them are supposed to act on microbial membranes. However, the detailed mechanisms of their action are still elusive. Here, we utilized coarse-grained molecular dynamics simulations to investigate interactions of different types of cationic antiseptics (CAs) with a model bacterial membrane. The simulations revealed qualitatively distinct patterns of dynamic and structural alterations of membrane induced by different types of antiseptics although none of them caused disintegration or solubilization of the bilayer even at the highest explored concentration. At the same time, the adsorption of antiseptics rendered membranes more vulnerable to poration under exposure to the external electric field. We further discuss the possible relation of the enhanced pore formation induced by CAs to their cytotoxic action.
Collapse
Affiliation(s)
- E G Kholina
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - I B Kovalenko
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sechenov University, Moscow 119991, Russia.,Astrakhan State University, Astrakhan 414056, Russia.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - M E Bozdaganyan
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Moscow Polytechnic University, Moscow 107023, Russia
| | - M G Strakhovskaya
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - P S Orekhov
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sechenov University, Moscow 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
7
|
Balatti GE, Domene C, Martini MF, Pickholz M. Differential Stability of Aurein 1.2 Pores in Model Membranes of Two Probiotic Strains. J Chem Inf Model 2020; 60:5142-5152. [PMID: 32815723 DOI: 10.1021/acs.jcim.0c00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aurein 1.2 is an antimicrobial peptide from the skin secretion of an Australian frog. In the previous experimental work, we reported a differential action of aurein 1.2 on two probiotic strains Lactobacillus delbrueckii subsp. bulgaricus (CIDCA 331) and Lactobacillus delbrueckii subsp. lactis (CIDCA 133). The differences found were attributed to the bilayer compositions. Cell cultures and CIDCA 331-derived liposomes showed higher susceptibility than the ones derived from the CIDCA 133 strain, leading to content leakage and structural disruption. Here, we used molecular dynamics simulations to explore these systems at the atomistic level. We hypothesize that if the antimicrobial peptides organized themselves to form a pore, it will be more stable in membranes that emulate the CIDCA 331 strain than in those of the CIDCA 133 strain. To test this hypothesis, we simulated preassembled aurein 1.2 pores embedded into bilayer models that emulate the two probiotic strains. It was found that the general behavior of the systems depends on the composition of the membrane rather than the preassemble system characteristics. Overall, it was observed that aurein 1.2 pores are more stable in the CIDCA 331 model membranes. This fact coincides with the high susceptibility of this strain against antimicrobial peptide. In contrast, in the case of the CIDCA 133 model membranes, peptides migrate to the water-lipid interphase, the pore shrinks, and the transport of water through the pore is reduced. The tendency of glycolipids to make hydrogen bonds with peptides destabilizes the pore structures. This feature is observed to a lesser extent in CIDCA 331 due to the presence of anionic lipids. Glycolipid transverse diffusion (flip-flop) between monolayers occurs in the pore surface region in all the cases considered. These findings expand our understanding of the antimicrobial peptide resistance properties of probiotic strains.
Collapse
Affiliation(s)
- Galo E Balatti
- Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina.,IFIBA, CONICET-UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg., Claverton Down, Bath BA27AY, The United Kingdom.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, The United Kingdom
| | - M Florencia Martini
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.,Instituto de Química y Metabolismo del Fármaco, Fac. de Farmacia y Bioquímica, (Universidad de Buenos Aires, IQUIMEFA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Monica Pickholz
- Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina.,IFIBA, CONICET-UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina
| |
Collapse
|
8
|
Le Brun AP, Zhu S, Sani MA, Separovic F. The Location of the Antimicrobial Peptide Maculatin 1.1 in Model Bacterial Membranes. Front Chem 2020; 8:572. [PMID: 32733854 PMCID: PMC7358649 DOI: 10.3389/fchem.2020.00572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Maculatin 1.1 (Mac1) is an antimicrobial peptide (AMP) from the skin secretions of Australian tree frogs. In this work, the interaction of Mac1 with anionic phospholipid bilayers was investigated by NMR, circular dichroism (CD) spectroscopy, neutron reflectometry (NR) and molecular dynamics (MD). In buffer, the peptide is unstructured but in the presence of anionic (DPC/LMPG) micelles or (DMPC/DMPG/DHPC) bicelles adopts a helical structure. Addition of the soluble paramagnetic agent gadolinium (Gd-DTPA) into the Mac1-DPC/LMPG micelle solution showed that the N-terminus is more exposed to the hydrophilic Gd-DTPA than the C-terminus in micelles. 2H and 31P solid-state NMR showed that Mac1 had a greater effect on the anionic lipid (DMPG). A deuterium labeled Mac1 used in NR experiments indicated that the AMP spanned across anionic (PC/PG) bilayers, which was compatible with MD simulations. Simulations also showed that Mac1 orientation remained transmembrane in bilayers and wrapped on the surface of the micelles regardless of the lipid or detergent charge. Thus, the peptide orientation appears to be more susceptible to curvature than charged surface. These results support the formation of transmembrane pores by Mac1 in model bacterial membranes.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Sani MA, Le Brun AP, Separovic F. The antimicrobial peptide maculatin self assembles in parallel to form a pore in phospholipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183204. [DOI: 10.1016/j.bbamem.2020.183204] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/15/2019] [Accepted: 01/21/2020] [Indexed: 01/06/2023]
|
10
|
Poger D, Pöyry S, Mark AE. Could Cardiolipin Protect Membranes against the Action of Certain Antimicrobial Peptides? Aurein 1.2, a Case Study. ACS OMEGA 2018; 3:16453-16464. [PMID: 30613806 PMCID: PMC6312644 DOI: 10.1021/acsomega.8b02710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The activity of a host of antimicrobial peptides has been examined against a range of lipid bilayers mimicking bacterial and eukaryotic membranes. Despite this, the molecular mechanisms and the nature of the physicochemical properties underlying the peptide-lipid interactions that lead to membrane disruption are yet to be fully elucidated. In this study, the interaction of the short antimicrobial peptide aurein 1.2 was examined in the presence of an anionic cardiolipin-containing lipid bilayer using molecular dynamics simulations. Aurein 1.2 is known to interact strongly with anionic lipid membranes. In the simulations, the binding of aurein 1.2 was associated with buckling of the lipid bilayer, the degree of which varied with the peptide concentration. The simulations suggest that the intrinsic properties of cardiolipin, especially the fact that it promotes negative membrane curvature, may help protect membranes against the action of peptides such as aurein 1.2 by counteracting the tendency of the peptide to induce positive curvature in target membranes.
Collapse
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sanja Pöyry
- Department
of Physics, Tampere University of Technology, POB 692, F1-33720 Tampere, Finland
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|