1
|
Essam D, Ahmed AM, Abdel-Khaliek AA, Shaban M, Rabia M. One pot synthesis of poly m-toluidine incorporated silver and silver oxide nanocomposite as a promising electrode for supercapacitor devices. Sci Rep 2025; 15:2698. [PMID: 39837976 PMCID: PMC11750978 DOI: 10.1038/s41598-024-84848-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
The design and fabrication of novel electrodes with strong electrochemical responses are crucial in advanced supercapacitor technology. In this study, a poly(m-toluidine)/silver-silver oxide (PMT/Ag-Ag2O) nanocomposite was prepared using the photopolymerization method. Various characterization techniques were employed to analyze the prepared nanomaterials. The resulting structure of Ag-Ag2O minimizes ion diffusion distances, increases active sites, and accelerates redox reactions. The electrochemical response of PMT and PMT/Ag-Ag2O electrodes was evaluated in three different electrolyte solutions (Na2SO4, H2SO4, and HCl). The specific capacitance of PMT/Ag-Ag2O nanocomposite was found to be higher than that of PMT alone. Among the tested electrolytes, HCl exhibited the highest specific capacitance of 443 F g-1 at a gravimetric current density of 0.4 A g-1, surpassing H2SO4 (104 F g-1) and Na2SO4 (32 F g-1). Also, the PMT/Ag-Ag2O nanocomposite has demonstrated good cycling stability. It exhibited a high specific power density of 156 W Kg-1 and a specific energy density of 1.8 Wh Kg-1. These results highlight the potential of the prepared PMT/Ag-Ag2O nanocomposite as a nanoelectrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Doaa Essam
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Ashour M Ahmed
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ahmed A Abdel-Khaliek
- Physical Chemistry Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Shaban
- Physics Department, Faculty of Science, Islamic University of Madinah, P. O. Box: 170, 42351, Al Madinah Al Monawara, Saudi Arabia
| | - Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Chen Q, Wang Z, Jin H, Zhao X, Feng H, Li P, He D. Compressed Graphene Assembled Film with Tunable Electrical Conductivity. MATERIALS (BASEL, SWITZERLAND) 2023; 16:526. [PMID: 36676263 PMCID: PMC9863763 DOI: 10.3390/ma16020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Graphene and graphene-based materials gifted with high electrical conductivity are potential alternatives in various related fields. However, the electrical conductivity of the macro-graphene materials is much lower than their metal counterparts. Herein, we improved the electrical conductivity of reduced graphene oxide (rGO) based graphene assembled films (GAFs) by applying a series of compressive stress and systematically investigated the relationship between the compressive stress and the electrical conductivity. The result indicates that with increasing applied compressive stress, the sheet resistance increased as well, while the thickness decreased. Under the combined effect of these two competing factors, the number of charge carriers per unit volume increased dramatically, and the conductivity of compressed GAFs (c-GAFs) showed an initial increasing trend as we applied higher pressure and reached a maximum of 5.37 × 105 S/m at the optimal stress of 450 MPa with a subsequent decrease with stress at 550 MPa. Furthermore, the c-GAFs were fabricated into strain sensors and showed better stability and sensitivity compared with GAF-based sensors. This work revealed the mechanism of the tunable conductivity and presented a facile and universal method for improving the electrical conductivity of macro-graphene materials in a controllable manner and proved the potential applications of such materials in flexible electronics like antennas, sensors, and wearable devices.
Collapse
Affiliation(s)
- Qiang Chen
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Zhe Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Huihui Jin
- School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Xin Zhao
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Feng
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Li
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| | - Daping He
- Hubei Engineering Research Center of RF-Microwave Technology and Application, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Vos JE, Inder Maur D, Rodenburg HP, van den Hoven L, Schoemaker SE, de Jongh PE, Erné BH. Electric Potential of Ions in Electrode Micropores Deduced from Calorimetry. PHYSICAL REVIEW LETTERS 2022; 129:186001. [PMID: 36374685 DOI: 10.1103/physrevlett.129.186001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/15/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
The internal energy of capacitive porous carbon electrodes was determined experimentally as a function of applied potential in aqueous salt solutions. Both the electrical work and produced heat were measured. The potential dependence of the internal energy is explained in terms of two contributions, namely the field energy of a dielectric layer of water molecules at the surface and the potential energy of ions in the pores. The average electric potential of the ions is deduced, and its dependence on the type of salt suggests that the hydration strength limits how closely ions can approach the surface.
Collapse
Affiliation(s)
- Joren E Vos
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Danny Inder Maur
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Hendrik P Rodenburg
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Lennart van den Hoven
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Suzan E Schoemaker
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Ben H Erné
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
4
|
Tadesse DB, Parsons DF. The impact of steric repulsion on the total free energy of electric double layer capacitors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Messias A, Fileti EE. Assessing the impact of valence asymmetry in ionic solutions and its consequences on the performance of supercapacitors. Phys Chem Chem Phys 2022; 24:20445-20453. [PMID: 35984412 DOI: 10.1039/d2cp00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations were performed to describe the properties of hypothetical salt electrolytic solutions. The main focus of this work is the valence asymmetry, which in recent years has been considered an important aspect in the physical chemistry of aqueous electrolytes. In general, our results show that the structural, energetic, and dynamic properties respond differently to the asymmetry of ionic solutions, but in all cases, appreciable changes were observed. Graphene supercapacitors based on the investigated electrolytes were studied in light of their electrostatic properties. We observed that the electrode capacitances, positive and negative, were greatly influenced by the presence of cations in the electrical double layer of the negative electrode and by the absence of these cations, in the double layer of the positive electrode. In general, we assess that quantitative variations due to valence asymmetry may indeed be an important factor for the development of new and more efficient electrolytes.
Collapse
Affiliation(s)
- Andresa Messias
- Center of Natural and Human Sciences, Federal University of ABC, 09210-170, Santo André, SP, Brazil.
| | - Eudes E Fileti
- Center of Natural and Human Sciences, Federal University of ABC, 09210-170, Santo André, SP, Brazil. .,Institute of Science and Technology of the Federal University of São Paulo, 12247-014, São José dos Campos, SP, Brazil
| |
Collapse
|
6
|
Zhou S. Effective electrostatic forces between two neutral surfaces with surface charge separation: valence asymmetry and dielectric constant heterogeneity. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2094296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- S. Zhou
- School of Physics and Electronics, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
7
|
Paulista Neto AJ, da Silva DAC, Gonçalves VA, Zanin H, Freitas RG, Fileti EE. An evaluation of the capacitive behavior of supercapacitors as a function of the radius of cations using simulations with a constant potential method. Phys Chem Chem Phys 2022; 24:3280-3288. [PMID: 35048088 DOI: 10.1039/d1cp04350a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on the atomistic molecular dynamics, applying the constant potential method to determine the structural and electrostatic interactions at the electrode-electrolyte interface of electrochemical supercapacitors as a function of the cation radius (Cs+, Rb+, K+, Na+, Li+). We find that the electrical double layer is susceptible to the size, hydration layer volume, and cations' mobility and analyzed them. Besides, the transient potential shows an increase in magnitude and length as a function of the monocation size, i.e., Cs+ > Rb+ > K+ > Na+ > Li+. On the other hand, the charge distribution along the electrode surface is less uniform for large monocations. Nonetheless, the difference is not observed as a function of the radius of the cation for the integral capacitance. Our results are comparable to studies that employed the fixed charge method for treating such systems.
Collapse
Affiliation(s)
- Antenor J Paulista Neto
- Advanced Energy Storage Division, Center for Innovation on New Energies, Carbon Sci-Tech Labs, School of Electrical and Computer Engineering, University of Campinas; Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.
| | - Débora A C da Silva
- Advanced Energy Storage Division, Center for Innovation on New Energies, Carbon Sci-Tech Labs, School of Electrical and Computer Engineering, University of Campinas; Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.
| | - Vanessa A Gonçalves
- Institute of Physics & Department of Chemistry, Laboratory of Computational Materials, Federal University of Mato Grosso, 78060-900, Cuiabá, MT, Brazil.
| | - Hudson Zanin
- Advanced Energy Storage Division, Center for Innovation on New Energies, Carbon Sci-Tech Labs, School of Electrical and Computer Engineering, University of Campinas; Av. Albert Einstein 400, Campinas, SP 13083-852, Brazil.
| | - Renato G Freitas
- Institute of Physics & Department of Chemistry, Laboratory of Computational Materials, Federal University of Mato Grosso, 78060-900, Cuiabá, MT, Brazil.
| | - Eudes E Fileti
- Institute of Science and Technology of the Federal University of São Paulo, 12247-014, São José dos Campos, SP, Brazil.
| |
Collapse
|
8
|
Messias A, C da Silva DA, Fileti EE. Salt-in-water and water-in-salt electrolytes: the effects of the asymmetry in cation and anion valence on their properties. Phys Chem Chem Phys 2021; 24:336-346. [PMID: 34889921 DOI: 10.1039/d1cp04259a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the structural, dynamic, energetic, and electrostatic properties of electrolytes based on the ion pairs LiCl and Li2SO4. Atomistic molecular dynamics simulations were used to simulate these aqueous electrolytic solutions at two different concentrations 2 M (normal) and 21 M (superconcentrated, WiSE). The effects of the valence asymmetry of the Li2SO4 electrolyte were also discussed for both salt concentrations. Our results differ in the physical aspect of pure electrolytes, showing the drastic effect of high concentration, in particular on the viscosity, which is dramatically increased in WiSE. This is a consequence of their reduced ionic mobility and has a direct effect on ionic conductivity. Also, our results for graphene-based supercapacitors, as indicated by some experimental work, do not indicate any better performance of WiSEs over normal electrolytes. In fact, the differences in the total capacitance, due to the concentration of ions, presented by both electrolytes are negligible. The valence asymmetry can be clearly observed in some properties but for most of them its effects could not be quantified or isolated.
Collapse
Affiliation(s)
- Andresa Messias
- Center of Natural and Human Sciences, Federal University of ABC, 09210-170, Santo André, SP, Brazil.
| | - Débora A C da Silva
- Center for Innovation on New Energies, Advanced Energy Storage Division, Carbon Sci-Tech Labs, University of Campinas, School of Electrical and Computer Engineering, Av. Albert Einstein 400, Campinas - SP, 13083-852, Brazil
| | - Eudes E Fileti
- Institute of Science and Technology of the Federal University of São Paulo, 12247-014, São José dos Campos, SP, Brazil.
| |
Collapse
|