1
|
Ouayloul L, Agirrezabal-Telleria I, Sebastien P, El Doukkali M. Trend and Progress in Catalysis for Ethylene Production from Bioethanol Using ZSM-5. ACS Catal 2024; 14:17360-17397. [DOI: 10.1021/acscatal.4c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- L. Ouayloul
- Department of Chemistry, University of Sultan Moulay Slimane (USMS), 23000, Beni-Mellal, Morocco
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), 45013 Bilbao, Spain
| | - I. Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), 45013 Bilbao, Spain
| | - Paul Sebastien
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - M. El Doukkali
- Department of Chemistry, University of Sultan Moulay Slimane (USMS), 23000, Beni-Mellal, Morocco
| |
Collapse
|
2
|
Shah D, Nezam I, Zhou W, Proaño L, Jones CW. Isomorphous Substitution in ZSM-5 in Tandem Methanol/Zeolite Catalysts for the Hydrogenation of CO 2 to Aromatics. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:2224-2234. [PMID: 38323028 PMCID: PMC10839831 DOI: 10.1021/acs.energyfuels.3c03755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 02/08/2024]
Abstract
Intensified reactors for conversion of CO2 to methanol (via hydrogenation) using metal oxide catalysts coupled with methanol conversion to aromatics in the presence of zeolites (e.g., H-ZSM-5) in a single step are investigated. Brønsted acid sites (BAS) in H-ZSM-5 are important sites in methanol aromatization reactions, and correlations of the reactivity with zeolite acid properties can guide reaction optimization. A classical way of tuning the acidity of zeolites is via the effect of the isomorphous substitution of the heteroatom in the framework. In this work, H-[Al/Ga/Fe]-ZSM-5 zeolites are synthesized with Si/T ratios = 80, 300, affecting the acid site strength as well as distribution of Brønsted and Lewis acid sites. On catalytic testing of the H-[Al/Ga/Fe]-ZSM-5/ZnO-ZrO2 samples for tandem CO2 hydrogenation and methanol conversion, the presence of weaker Brønsted acid sites improves the aromatics selectivity (CO2 to aromatics selectivity ranging from 13 to 47%); however, this effect of acid strength was not observed at low T atom content. Catalytic testing of H-[B]-ZSM-5/ZnO-ZrO2 provides no conversion of CO2 to hydrocarbons, showing that there is a minimum acid site strength needed for measurable aromatization reactivity. The H-[Fe]-ZSM-5-80/ZnO-ZrO2 catalyst shows the best catalytic activity with a CO2 conversion of ∼10% with a CO2 to aromatics selectivity of ∼51%. The catalyst is shown to provide stable activity and selectivity over more than 250 h on stream.
Collapse
Affiliation(s)
- Dhrumil
R. Shah
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Iman Nezam
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Wei Zhou
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National Engineering
Laboratory for Green Chemical Productions of Alcohols, Ethers and
Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Laura Proaño
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332, United States
| |
Collapse
|
3
|
Boekfa B, Maihom T, Ehara M, Limtrakul J. Investigation of the Suzuki-Miyaura cross-coupling reaction on a palladium H-beta zeolite with DFT calculations. Sci Rep 2024; 14:611. [PMID: 38182728 PMCID: PMC10770145 DOI: 10.1038/s41598-023-51116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Metal or metal cluster-doped zeolites catalyse a wide variety of reactions. In this work, a coupling reaction between bromobenzene and phenylboronic acid to yield biphenyl with the Pd-H-Beta zeolite catalyst was investigated with density functional theory (DFT) calculations. Utilizing a model system with tetrahedral Pd4 clusters within the H-Beta zeolite, it was demonstrated that the catalyst exhibited notable reactivity by effectively reducing the activation energy barrier for the reaction. Our investigation revealed that the zeolite framework facilitated electron transfer to the Pd cluster, thereby increasing the reaction activity. The coupling reaction was shown to be exothermic and comprise three main steps: oxidative addition of bromobenzene (C6H5Br), transmetallation with phenylboronic acid (C6H5B(OH)2), and reductive elimination of biphenyl (C12H10). Specifically, in the transmetallation step, which was the rate-determining step, the C-B bond breaking in phenylboronic acid (C6H5B(OH)2) and the phenylboronate anion (C6H5B(OH)3-) were compared under neutral and basic conditions, respectively. This comprehensive study clarifies the mechanism for the reaction with the modified Pd zeolite catalyst and highlights the essential role of the zeolite framework.
Collapse
Affiliation(s)
- Bundet Boekfa
- Division of Chemistry, Department of Physical and Material Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| | - Thana Maihom
- Division of Chemistry, Department of Physical and Material Sciences, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Masahiro Ehara
- Institute for Molecular Science, Nishigo-naka 38, Myodaiji, Okazaki, 444-8585, Japan
| | - Jumras Limtrakul
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
| |
Collapse
|
4
|
Srirattanasakunsuk P, Boekfa B, Treesukol P, Jarussophon N, Maihom T, Kongpatpanich K, Limtrakul J. Combined Experimental and Theoretical Study of the Synthesis of 5,7-Dihydroxy-4-methylcoumarin via a Pechmann Condensation in the Presence of UiO-66-SO 3H Catalysts. ACS OMEGA 2023; 8:46904-46913. [PMID: 38107951 PMCID: PMC10720004 DOI: 10.1021/acsomega.3c06624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
An efficient synthesis of 5,7-dihydroxy-4-methylcoumarin from phloroglucinol with ethyl acetoacetate in the UiO-66-SO3H metal-organic framework is reported. The potential of UiO-66-SO3H as a solid catalyst was determined through optimized-condition experiments and quantum molecular calculations. The optimal conditions for the synthesis of 5,7-dihydroxy-4-methylcoumarin with UiO-66-SO3H were as follows: phloroglucinol/ethyl acetoacetate molar ratio = 1:1.6, reaction time = 4 h, and temperature = 140 °C, for which the reaction yield reached 66.0%. The reusability of UiO-66-SO3H catalysts for Pechmann condensation was examined. The activation energy of the reaction occurring on a sulfonic group of the UiO-66-SO3H catalyst was 12.6 kcal/mol, which was significantly lower than 22.6 kcal/mol of the same reaction on the UiO-66 catalyst. To comprehend the reaction mechanism, density functional theory with the ONIOM approach was applied for the synthesis of coumarin on the UiO-66-SO3H and UiO-66 clusters. A possible reaction mechanism was proposed involving three steps: a trans-esterification step, an intramolecular hydroxyalkylation step, and a dehydration step. The rate-determining step was suggested to be the first step which acquired an activation energy of 15.7 and 29.5 kcal/mol, respectively. Information from this study can be used as guidelines to develop more efficient catalytic metal-organic frameworks for various organic syntheses.
Collapse
Affiliation(s)
- Pattraporn Srirattanasakunsuk
- Division
of Chemistry, Department of Physical and Material Sciences, Faculty
of Liberal Arts and Science, Kasetsart University, KamphaengSaen Campus, Nakhon, Pathom 73140, Thailand
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| | - Bundet Boekfa
- Division
of Chemistry, Department of Physical and Material Sciences, Faculty
of Liberal Arts and Science, Kasetsart University, KamphaengSaen Campus, Nakhon, Pathom 73140, Thailand
- Center
for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural
Industries, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok 10900, Thailand
| | - Piti Treesukol
- Division
of Chemistry, Department of Physical and Material Sciences, Faculty
of Liberal Arts and Science, Kasetsart University, KamphaengSaen Campus, Nakhon, Pathom 73140, Thailand
| | - Nongpanga Jarussophon
- Division
of Chemistry, Department of Physical and Material Sciences, Faculty
of Liberal Arts and Science, Kasetsart University, KamphaengSaen Campus, Nakhon, Pathom 73140, Thailand
| | - Thana Maihom
- Division
of Chemistry, Department of Physical and Material Sciences, Faculty
of Liberal Arts and Science, Kasetsart University, KamphaengSaen Campus, Nakhon, Pathom 73140, Thailand
| | - Kanokwan Kongpatpanich
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| | - Jumras Limtrakul
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| |
Collapse
|
5
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|