1
|
Han YH, Li XY, Ma ZL, Wang BG, Du JH, Yang Y, Zhao HW, Jin QJ, Bi PY. Molecular dynamics simulation of TNT/PYRN cocrystal PBXs. J Mol Model 2025; 31:162. [PMID: 40387975 DOI: 10.1007/s00894-025-06394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
CONTEXT The ternary eutectic system comprising trinitrotoluene (TNT) and pyranidine (PYRN) exhibits potential as a moderate-energy explosive compound characterized by reduced sensitivity. Recently, this composition can be a suitable alternative to TNT in the development of low-vulnerability explosive formulations, thus providing a promising alternative for future applications in the field of energetic materials. However, the changes in the structure and properties of eutectic explosives and their intrinsic causes for these changes have been rarely explored. Here, we construct a theoretical model of the TNT/PYRN eutectic system and integrates a diverse array of polymer additives, including butadiene rubber (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), fluorinated polymer (F2603), and polyvinylidene fluoride (PVDF), into five distinct cleavage planes ((1 0 0), (0 1 0), (0 1 - 1), (1 0 0), and (1 0 - 1)) within the eutectic matrix. We found that the synthesis of polymer-bonded explosives (PBXs) is achieved through the integration of the aforementioned polymers into the TNT/PYRN eutectic system. This investigation elucidated the influence of various polymer matrices on the structural integrity, critical bond distances for initiation, mechanical attributes, and detonative behavior of the resultant PBXs. Within the corpus of five PBX models examined, the TNT/PYRN/F2603 configuration showed the supremum in binding energetics and the infimum in critical bond lengths, which portends superior stability, interfacial harmony, and a minimized propensity for unintended initiation. Furthermore, the TNT/PYRN/F2603 system was delineated by its enhanced capability for explosive initiation. Note importantly that the TNT/PYRN/F2603 model exhibited pre-eminence in its aggregate performance metrics, corroborating the hypothesis that F2603 constitutes a preferential binder candidate for PBX formulations predicated on the TNT/PYRN eutectic composite. METHODS Utilizing the Materials Studio computational platform, the physicochemical attributes of the TNT/PYRN eutectic-based polymer-bonded explosives (PBXs) were anticipated via molecular dynamics (MD) simulations. The MD protocol was executed with a temporal increment of 1 fs, encompassing an aggregate simulation span of 2 ns. An isothermal-isobaric (NPT) thermodynamic ensemble was employed for the duration of the 2 ns MD trajectory. The COMPASS empirical force field was utilized to model interatomic interactions, and the thermal parameter was maintained at a constant 295 K throughout the simulation campaign.
Collapse
Affiliation(s)
- Yu-Hang Han
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
- Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Xin-Yi Li
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Zhong-Liang Ma
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Bao-Guo Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Ji-Hang Du
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
- Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Yu Yang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hong-Wei Zhao
- Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Qing-Jun Jin
- Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China
| | - Peng-Yu Bi
- Institute of Chemical Defense, Academy of Military Sciences, Beijing, 102205, People's Republic of China.
| |
Collapse
|
2
|
Han J, Sun W, Chen J, Yue Z, Fang W, Liu X, Wang J, Wu G. Design of Coamorphous Systems for Flavonoid Components Coformed with Meglumine by Integrating Theory-Model-Experiment Techniques. Mol Pharm 2025. [PMID: 40298094 DOI: 10.1021/acs.molpharmaceut.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Flavonoids represent an extensive group of phenolic substances in vegetables, fruits, grains, tea, flowers, etc., which show a variety of biological activities in various nutraceutical, cosmetic, and medicinal fields. Despite demonstrating multifunctional bioactive properties relevant to nutraceutical and pharmaceutical applications, their clinical utilization faces challenges due to their generally low water solubility. This study established a systematic methodology combining computational modeling and experimental validation for developing flavonoid-meglumine (MEG) coamorphous formulations. The initial screening identified 13 flavonoid compounds exhibiting favorable miscibility with MEG from 15 candidates through Hansen solubility parameter analysis. Subsequent molecular dynamics simulations revealed potential hydrogen bond formation in six selected flavonoids (BAI, HES, NAR, KAE, QUE, and ISO) with MEG. Then, six flavonoid coamorphous systems were successfully prepared via the melt-quenching method and characterized by PLM, PXRD, and differential scanning calorimetry. FTIR and radial distribution function analysis results collectively confirmed intermolecular hydrogen bond interactions within these binary systems. In vitro dissolution studies revealed significant solubility/dissolution enhancement in both pH 1.2 HCl and pH 6.8 phosphate buffers, maintaining long-term supersaturation for all six coamorphous formulations. Meanwhile, six flavonoid coamorphous systems had superior stability over individual flavonoid amorphous components, which were attributed to the stronger intermolecular interactions by higher binding energy calculation. These results indicated that the obtained flavonoid coamorphous systems performed a promising application potential in functional products. Importantly, this study presents a novel design framework integrating computational prediction, molecular modeling, and experimental validation for systematic screening of flavonoid coamorphous formulations.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiaxin Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Weitao Fang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Gaorong Wu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
3
|
Han J, Sun W, Yao Y, Li S, Yue Z, Fang W, Liu X, Wang J, Chen J. A New Screening Strategy for Flavonoid Components to Obtain a Satisfactory Co-Amorphous System with Piperine. AAPS PharmSciTech 2025; 26:78. [PMID: 40045016 DOI: 10.1208/s12249-025-03077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Flavonoids are a large class of compounds with a variety of biological activities. Nevertheless, their therapeutic application remains limited due to the generally low water solubility. In the present study, an integrated approach was provided to guide the design of flavonoid co-amorphous systems co-formed with piperine (PIP). Firstly, 7 flavonoid compounds showed good miscibility with PIP from 13 flavonoid candidates. Then, molecular dynamics simulation confirmed hydrogen bond formation between 5 flavonoid compounds (i.e., BAI, HES, ISO, NAR and KAE) and PIP. Herein, 5 flavonoid compounds were successfully co-amorphized with PIP by the melting and quench cooling method, which were proved via PLM, PXRD and DSC measurements. FTIR results showed the potential hydrogen bond interactions between -OH of flavonoid molecules and C = O of PIP molecule in the formed co-amorphous systems, which were consistent with RDF analyses in molecular models. For dissolution tests, 4 co-amorphous systems (i.e., BAI-PIP CM, HES-PIP CM, ISO-PIP CM and NAR-PIP CM) appeared abnormally reduced dissolution compared to their original crystalline counterparts arising from the formation of gels during dissolution, while only KAE-PIP CM displayed significantly enhanced dissolution (5.83-fold of crystalline KAE at 12 h) with long-time supersaturated concentration. Meanwhile, KAE-PIP CM kept physically stable at least 3 months under 25°C and 40°C conditions, and possessed excellent physical stability over individual amorphous components, which was attributed to the stronger intermolecular interaction by higher binding energy analysis. Therefore, this study provides a design strategy to guide the screening of flavonoid co-amorphous systems through combining theory-model-experiment techniques.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou, 213018, P.R., China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R., China
| | - Wen Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China
| | - Yongxu Yao
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China
| | - Shuo Li
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China
| | - Zhimin Yue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China
| | - Weitao Fang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China.
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R., China.
| | - Jiaxin Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, P.R., China.
| |
Collapse
|
4
|
Chen YF, Wang BG, Wang CG. Molecular dynamics simulation of CL-20 based high temperature resistant PBX. J Mol Model 2025; 31:55. [PMID: 39833581 DOI: 10.1007/s00894-025-06287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
CONTEXT To address the issue that the output charge in existing Deflagration to Detonation Transition (DDT) detonators cannot withstand high temperatures of 200 °C, and to improve the output performance of the detonator, a CL-20 (Hexanitrohexaazaisowurtzitane) based polymer bonded explosive (PBX) was investigated as the primary charge material for the detonator. To select the most suitable binder for thermal resistance, molecular dynamics (MD) simulations were employed to evaluate the performance of different binders at various crystal planes and temperatures. The results indicate that among the five PBXs models, CL-20/F2602 exhibits the highest binding energy and the shortest bond initiation length at both ambient and elevated temperatures. CL-20/F2611 demonstrates stronger hydrogen bonding interactions and superior thermal stability at high temperatures. CL-20/PCTFE shows the best ductility, while CL-20/F2602 possesses the second-best ductility. Therefore, PBXs containing F2602 possess the best stability, compatibility, and satisfactory ductility, while PBXs with F2611 exhibit the best thermal stability. Both F2602 and F2611 are suitable as binders for CL-20. METHODS Molecular dynamics (MD) simulations were carried out using the Materials Studio software to calculate the binding energies, trigger bond lengths, and mechanical properties of five PBX models at different crystal planes at 298 K, and at various temperatures on the (0 1 1) crystal plane after a 1 ns NPT dynamics simulation. The total MD simulation time was 1 ns, with a time step of 1 fs, and the COMPASS force field was employed throughout the simulation.
Collapse
Affiliation(s)
- Ya-Fang Chen
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Bao-Guo Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Chun-Guang Wang
- Shanxi Jiangyang Chemical Industry Corporation, Taiyuan, 030041, Shanxi, China
| |
Collapse
|
5
|
Paneru TR, Chaudhary MK, Joshi BD, Tandon P. Cocrystal screening of benznidazole based on electronic transition, molecular reactivity, hydrogen bonding, and stability. J Mol Model 2024; 30:378. [PMID: 39404909 DOI: 10.1007/s00894-024-06146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/13/2024] [Indexed: 11/14/2024]
Abstract
CONTEXT Screening of cocrystals of active pharmaceutical ingredients is important in the development of pharmaceutical compounds because it improves bioavailability, stability, solubility, and many other physicochemical properties. In this work, quantum chemical calculations were utilized for the computational evaluation of the cocrystal screening of benznidazole (BZN) API via hydrogen bonding with four coformers (maleic acid, malonic acid, oxalic acid, and salicylic acid), and they contain carboxylic groups. The nitrogen of the imidazole ring in benznidazole and the carboxylic group of the coformer form a hetero-synthon connected by a strong hydrogen bond. The strength of the hydrogen bonding interaction O-H…N was measured using various tools. It was found that in comparison to BZN cocrystals with malonic acid, oxalic acid, and salicylic acid, the O-H…N interaction in the BZN-maleic acid cocrystal had higher interaction energy, indicating it had stronger hydrogen bonding. The strength of the hydrogen bond O-H…N for synthons was discovered to be more beneficial than the C-H…O interaction, as confirmed by ESP analysis. The BZN-salicylic acid cocrystal was found to be more reactive and polarizable, whereas the BZN-malonic acid cocrystal was more stable. Cocrystals of benznidazole exhibited better physicochemical characteristics than API benznidazole, as indicated by electron transition properties between the most significant orbitals. METHODS The computational evaluation for the screening of benznidazole cocrystals was performed in Gaussian 16 software using density functional theory (DFT) with the hybrid functional B3LYP and the basis set 6-311 + + G(d,p). The UV-Vis absorption spectrum in solvent water was analyzed using the TD-DFT/6-311 + + G(d,p) method to determine the influence of the solvent in cocrystals using a polarizable continuum model. The strength of the hydrogen bonding interactions O-H…N in each of those mentioned cocrystals was used to screen the cocrystals using tools such as thermodynamic probability, ESP analysis, QTAIM analysis, and NBO analysis. The pairing energy of interaction was measured by determining H-bond donor ( α max ) and H-bond acceptor( β max ) parameters for hydrogen bonds from maxima and minima on the ESP surface. GaussView 06 software was used to create, visualize, and plot the optimized structure of the cocrystal and HOMO-LUMO orbitals. The AIMALL (10.05.04) software package generated the molecular graph for intra- and intermolecular interactions. The RDG-scatter plot, MEP map, and ELF plot were rendered from Multiwfn 8.0 and VMD 1.9.1 software.
Collapse
Affiliation(s)
- Tirth Raj Paneru
- Department of General Science, Far Western University, Mahendranagar, 10400, Nepal
- Department of Physics, University of Lucknow, Uttar Pradesh, Lucknow, 226007, India
- Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Manoj Kumar Chaudhary
- Department of Physics, Amrit Campus, Institute of Science and Technology, Tribhuvan University, Kathmandu, 44600, Nepal
| | - Bhawani Datt Joshi
- Department of Physics, Siddhanath Science Campus, Tribhuvan University, Mahendranagar, 10400, Nepal.
| | - Poonam Tandon
- Department of Physics, University of Lucknow, Uttar Pradesh, Lucknow, 226007, India.
| |
Collapse
|
6
|
Song X, Zhang H, Jin D, Huang S, Sun J, Xu J. Solvent Vapor/Gas-Induced Guest Transport and Exchange of a Nonporous Organic Crystal to Construct Smart Host-Guest Energetic Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52264-52276. [PMID: 39358898 DOI: 10.1021/acsami.4c10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Supramolecular materials with advanced properties constructed by intermolecular interactions have attracted extensive attention in many fields, such as sensing, catalysis, and biomedicine. However, in the field of energetic materials, limited by the tight-packed crystal structure of explosives and the strong intermolecular interaction forces, most supramolecular explosives can only be obtained in organic solution or under extreme external loading (high temperature/high pressure). Given the practical issues such as safety risks, operational difficulties, serious environmental pollution, and large-scale production of the existing technology, a new method of constructing host-guest explosives by solvent vapor/gas induction is proposed. This gas-solid reaction method takes advantage of the metastable properties from the explosives solvate (HNIW/ACN), and cleverly opens a fast channel for gas molecules to enter the explosives cell cavities, which results in the highly efficient preparation of the host-guest explosives (HNIW/CO2 and HNIW/N2O). The embedding of functional gas molecules greatly improves the structural stability and comprehensive performance of the explosive skeleton, and the detonation velocity of HNIW/N2O even reaches 9802 m·s-1, which is higher than that of ε-HNIW (9455 m·s-1). In addition, compared with ε-HNIW, HNIW/CO2 and HNIW/N2O exhibit high energy but low sensitivity, enhanced thermal stability, and combustion properties, which present a potential prospect in the field of energetic materials. The new method effectively overcomes the high-energy barrier of nonporous organic explosives, offering the advantages of simplicity, safety, efficiency, and environmental friendliness. This study provides a valuable pathway for constructing advanced supramolecular energetic materials, which contributes to the enrichment of supramolecular engineering systems.
Collapse
Affiliation(s)
- Xiaomin Song
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| | - Haobin Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| | - Dengyu Jin
- Xi'an North Hui'an Chemical Industry Co., Ltd., Xi'an 710302, China
| | - Shiliang Huang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| | - Jie Sun
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| | - Jinjiang Xu
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, Sichuan 621900, China
| |
Collapse
|
7
|
Li XY, Wang BG, Chen YF, Fu JB, Du JH, Wang CG. Molecular dynamics simulation of DNAN/DNB cocrystal PBXs. J Mol Model 2024; 30:303. [PMID: 39115702 DOI: 10.1007/s00894-024-06096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 09/11/2024]
Abstract
CONTEXT The DNAN/DNB eutectic is a high-energy explosive eutectic with superior safety and thermal stability compared to traditional melt-cast explosives. However, the addition of polymer binders can effectively enhance its mechanical properties, allowing for continued production demands without the need for changes to existing factory equipment. In this paper, a model of the DNAN/DNB eutectic explosive was established, and five different types of polymers-cis-1,4-polybutadiene (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), fluorinated polymer (F2603), and polyvinylidene fluoride (PVDF)-were added to the (1 0 - 1), (1 0 1), and (0 1 1) cleavage planes, respectively, to form polymer-bonded explosives (PBXs). The stability, trigger bond length, mechanical properties, and detonation performance of the various polymer-bound PBXs were predicted retrogressively. Among the five PBX models, the DNAN/DNB/PEG model exhibited the highest binding energy and the shortest trigger bond length, indicating a significant improvement in stability, compatibility, and sensitivity compared to the original eutectic. Additionally, although the detonation performance of DNAN/DNB decreased after the addition of binders, the final results were still satisfactory. Overall, the DNAN/DNB/PEG model demonstrated excellent comprehensive performance, proving that among the many polymer binders, PEG is the optimal choice for DNAN/DNB. METHODS Within the Materials Studio software, molecular dynamics (MD) simulations were employed to predict the properties of the DNAN/DNB eutectic PBX. The MD simulation timestep was set to 1 fs, with a cumulative simulation duration of 2 ns. A 2 ns MD simulation was conducted using the isothermal-isobaric ensemble (NPT). The COMPASS force field was applied, and the temperature was fixed at 295 K.
Collapse
Affiliation(s)
- Xin-Yi Li
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Bao-Guo Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Ya-Fang Chen
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jian-Bo Fu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji-Hang Du
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Chun-Guang Wang
- Shanxi Jiangyang Chemical Limited Company, Taiyuan, 030041, Shanxi, China
| |
Collapse
|
8
|
Han J, Yang Y, Hou Y, Tang M, Zhang Y, Zhu Y, Liu X, Wang J, Gao Y. Insight into Formation, Synchronized Release and Stability of Co-Amorphous Curcumin-Piperine by Integrating Experimental-Modeling Techniques. J Pharm Sci 2024; 113:1874-1884. [PMID: 38354909 DOI: 10.1016/j.xphs.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Intermolecular interactions between drug and co-former are crucial in the formation, release and physical stability of co-amorphous system. However, the interactions remain difficult to investigate with only experimental tools. In this study, intermolecular interactions of co-amorphous curcumin-piperine (i.e., CUR-PIP CM) during formation, dissolution and storage were explored by integrating experimental and modeling techniques. The formed CUR-PIP CM exhibited the strong hydrogen bond interaction between the phenolic OH group of CUR and the CO group of PIP as confirmed by FTIR, ss 13C NMR and molecular dynamics (MD) simulation. In comparison to crystalline CUR, crystalline PIP and their physical mixture, CUR-PIP CM performed significantly increased dissolution accompanied by the synchronized release of CUR and PIP, which arose from the greater interaction energy of H2O-CUR molecules and H2O-PIP molecules than CUR-PIP molecules, breaking the hydrogen bond between CUR and PIP molecules, and then causing a pair-wise solvation of CUR-PIP CM at the molecular level. Furthermore, the stronger intermolecular interaction between CUR and PIP was revealed by higher binding energy of CUR-PIP molecules, which contributed to the excellent physical stability of CUR-PIP CM over amorphous CUR or PIP. The study provides a unique insight into the formation, release and stability of co-amorphous system from MD perspective. Meanwhile, this integrated technique can be used as a practical methodology for the future design of co-amorphous formulations.
Collapse
Affiliation(s)
- Jiawei Han
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China; School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yang Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunjuan Hou
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Mengyuan Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yunran Zhang
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Yijun Zhu
- Changzhou Pharmaceutical Factory Co., LTD, Changzhou 213018, PR China
| | - Xiaoqian Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Jue Wang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
9
|
Mao JS, Wang BG, Chen YF, Fu JB, Tian X, Ye BY. Molecular dynamics simulation of CL20/DNDAP cocrystal-based PBXs. J Mol Model 2023; 29:199. [PMID: 37269375 DOI: 10.1007/s00894-023-05605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
CONTEXT CL-20/DNDAP cocrystal is a promising new type of explosive with exceptional energy density and detonation parameters. However, compared to TATB, FOX-7 and other insensitive explosives, it still has higher sensitivity. In order to decrease the sensitivity of CL20/DNDAP cocrystal explosive, in this article, a CL20/DNDAP cocrystal model was established, and six different types of polymers, including butadiene rubber (BR), ethylene-vinyl acetate copolymer (EVA), polyethylene glycol (PEG), hydroxyl-terminated polybutadiene (HTPB), fluoropolymer (F2603), and polyvinylidene difluoride (PVDF), were added to the three cleaved surfaces of (1 0 0), (0 1 0) and (0 0 1) to obtain polymer-bonded explosives (PBXs). Predict the effects of different polymers on the stability, trigger bond length, mechanical properties, and detonation performance of PBXs. Among the six PBX models, CL-20/DNDAP/PEG model exhibited the highest binding energy and the lowest trigger bond length, indicating that CL-20/DNDAP/PEG model had the best stability, compatibility, and the least sensitivity. Furthermore, although the CL-20/DNDAP/F2603 model demonstrated superior detonation capabilities, it should be noted that this model displayed low levels of compatibility. Overall, CL-20/DNDAP/PEG model exhibited the superior comprehensive properties, thereby demonstrating that PEG is a more suitable binder option for PBXs based on the CL20/DNDAP cocrystal. METHODS The properties of CL-20/DNDAP cocrystal-based PBXs were predicted by molecular dynamics (MD) method under Materials Studio software. The MD simulation time step was set at 1fs and the total MD simulation time was 2ns. The Isothermal-isobaric (NPT) ensemble was used for the 2ns of MD simulation. The COMPASS force field was used, and the temperature was set at 295K.
Collapse
Affiliation(s)
- Jian-Sen Mao
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Bao-Guo Wang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Ya-Fang Chen
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jian-Bo Fu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xing Tian
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Bao-Yun Ye
- School of Environmental and Safety Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
10
|
Theoretical research on performances of CL-20/HMX cocrystal explosive and its based polymer bonded explosives (PBXs) by molecular dynamics method. J Mol Model 2022; 28:385. [DOI: 10.1007/s00894-022-05380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
|
11
|
Sultan M, Wu J, Haq IU, Imran M, Yang L, Wu J, Lu J, Chen L. Recent Progress on Synthesis, Characterization, and Performance of Energetic Cocrystals: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154775. [PMID: 35897950 PMCID: PMC9330407 DOI: 10.3390/molecules27154775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 01/15/2023]
Abstract
In the niche area of energetic materials, a balance between energy and safety is extremely important. To address this "energy-safety contradiction", energetic cocrystals have been introduced. The investigation of the synthesis methods, characteristics, and efficacy of energetic cocrystals is of the utmost importance for optimizing their design and development. This review covers (i) various synthesis methods for energetic cocrystals; (ii) discusses their characteristics such as structural properties, detonation performance, sensitivity analysis, thermal properties, and morphology mapping, along with other properties such as oxygen balance, solubility, and fluorescence; and (iii) performance with respect to energy contents (detonation velocity and pressure) and sensitivity. This is followed by concluding remarks together with future perspectives.
Collapse
Affiliation(s)
- Manzoor Sultan
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
- Department of Physics, The University of Lahore, Lahore 54000, Pakistan;
| | - Junying Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
- Correspondence: ; Tel.: +86-136-914-20206
| | - Ihtisham Ul Haq
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Muhammad Imran
- Department of Physics, The University of Lahore, Lahore 54000, Pakistan;
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lijun Yang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - JiaoJiao Wu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - Jianying Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| | - Lang Chen
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China; (M.S.); (L.Y.); (J.W.); (J.L.); (L.C.)
| |
Collapse
|
12
|
Han J, Li L, Yu Q, Zheng D, Song Y, Zhang J, Gao Y, Heng W, Qian S, Pang Z. Self-gelation involved in the transformation of resveratrol and piperine from a co-amorphous system into a co-crystal system. CrystEngComm 2022. [DOI: 10.1039/d2ce00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-gelation of co-amorphous system promotes the transformation into its co-crystal system during dissolution.
Collapse
Affiliation(s)
- Jiawei Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
- School of Pharmacy, Changzhou University, Changzhou, 213164, P.R. China
| | - Luyuan Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Qian Yu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Yutong Song
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| | - Zunting Pang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P.R. China
| |
Collapse
|