1
|
Geetha Sadasivan Nair R, Narayanan Nair AK, Sun S. Adsorption of drugs on B 12N 12 and Al 12N 12 nanocages. RSC Adv 2024; 14:31756-31767. [PMID: 39380648 PMCID: PMC11459447 DOI: 10.1039/d4ra05586a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
The adsorption behavior of twelve drug molecules (5-fluorouracil, nitrosourea, pyrazinamide, sulfanilamide, ethionamide, 6-thioguanine, ciclopirox, 6-mercaptopurine, isoniazid, metformin, 4-aminopyridine, and cathinone) on B12N12 and Al12N12 nanocages was studied using density functional theory. In general, the drug molecules prefer to bind with the boron atom of the B12N12 nanocage and the aluminium atoms of the Al12N12 nanocage. However, a hydrogen atom is transferred from each of 5-fluorouracil, nitrosourea, 6-thioguanine, ciclopirox, and 6-mercaptopurine to the nitrogen atom of the Al12N12 nanocage. All the drug molecules are found to be chemisorbed on the B12N12 and Al12N12 nanocages. The adsorption energies of the drug/B12N12 system are linearly correlated with the molecular electrostatic potential minimum values of the drug molecules. The transfer of the hydrogen atom from the drug molecules to the nitrogen atom of the Al12N12 nanocage leads to relatively high adsorption energies. We observed significant changes in the reactivity parameters (e.g. electronic chemical potential) of the nanocages due to the chemisorption process. Overall, the QTAIM analysis indicates that the interactions between drug molecules and nanocages have a partial covalent character. Among the studied systems, the adsorption process was more spontaneous for the ciclopirox/Al12N12 system in water.
Collapse
Affiliation(s)
- Remya Geetha Sadasivan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
2
|
S Al-Otaibi J, Mary YS, Mary YS, Cristina Gamberini M. SERS analysis, DFT, and solution effects regarding the structural and optical characteristics of folic acid biomolecule adsorbed on a Cu 3 metal cluster. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124161. [PMID: 38493513 DOI: 10.1016/j.saa.2024.124161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The optical characteristics of folic acid (ABP) and metal clusters of copper (Cu3) at various locations were investigated by means of density functional theory (DFT) computations. Mulliken charge analysis and molecular electrostatic potential (MEP) surface show how charge moves from Cu3 to ABP through the various groups. The peak in the UV-Vis spectra of ABP-Cu3 is caused by bonding and anti-bonding orbitals. In both vacuum and aqueous conditions, the polarizability values of ABP-Cu3 cluster are significantly higher than those of pure ABP, indicating a possible enhancement of the nonlinear optical (NLO) effect. Our research investigates the possibility of using ABP adsorbed metal clusters for NLO materials. Surface enhanced Raman scattering (SERS) in the ABP adsorbed metal clusters enhances the vibrational modes of ABP. Adsorption energies are found to be in the range -17.08 to -58.52 kcal/mol in vacuum and -53.34 to -93.44 kcal/mol in aqueous medium for the different configurations for ABP-Cu3. It indicates that metal clusters adsorbed by ABP are stable in the aqueous media. Experimental IR and UV-Vis of ABP is in agreement with theoretically predicted ones.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Y Sheena Mary
- Department of Physics, FMN College (Autonomous), Kollam, Kerala, University of Kerala, India
| | | | - Maria Cristina Gamberini
- Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 103, 41125 Modena, Italy
| |
Collapse
|
3
|
Majeed A, Ibrahim AH, Al-Rawi SS, Iqbal MA, Kashif M, Yousif M, Abidin ZU, Ali S, Arbaz M, Hussain SA. Green Organo-Photooxidative Method for the Degradation of Methylene Blue Dye. ACS OMEGA 2024; 9:12069-12083. [PMID: 38496983 PMCID: PMC10938592 DOI: 10.1021/acsomega.3c09989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
This study used an organophoto-oxidative material to degrade the toxic azo dye, methylene blue (MB), due to its hazardous effects on aquatic life and humans. MB is traditionally degraded using metal-based catalysts, resulting in high costs. Several organic acids were screened for organo-photooxidative applications against various azo dyes, and ascorbic acid (AA), also known as vitamin C, was found to be best for degradation due to its high photooxidative activity. It is an eco-friendly, edible, and efficient photooxidative material. A photocatalytic box has been developed for the study of organo-photooxidative activity. It was found that when AA was added, degradation efficiency increased from 42 to 95% within 240 min. Different characterization techniques, such as HPLC and GC-MS, were used after degradation for the structural elucidation of degraded products. DFT study was done for the investigation of the mechanistic study behind the degradation process. A statistical tool, RSM, was used for the optimization of parameters (concentration of dye, catalyst, and time). This study develops sustainable and effective solutions for wastewater treatment.
Collapse
Affiliation(s)
- Adnan Majeed
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Ahmad H. Ibrahim
- Pharmacy
Department, Faculty of Pharmacy, Tishk International
University, 100Mt. St, Near Baz Intersection, Erbil, KRG, Iraq
| | - Sawsan S. Al-Rawi
- Biology
Education Department, Faculty of Education, Tishk International University, 100Mt. St, Near Baz Intersection, Erbil, KRG, Iraq
| | - Muhammad Adnan Iqbal
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
- Synthetic
Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Kashif
- Department
of Mathematics and Statistics, University
of Agriculture Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Yousif
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Zain Ul Abidin
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Shahzaib Ali
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Arbaz
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Syed Arslan Hussain
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| |
Collapse
|
4
|
G F N, V V, M G, S M, M P. Surface enhanced Raman scattering investigation of tecovirimat on silver, gold and platinum loaded silica nanocomposites: Theoretical analysis (DFT) and molecular modeling. Heliyon 2023; 9:e21122. [PMID: 37916120 PMCID: PMC10616345 DOI: 10.1016/j.heliyon.2023.e21122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
As of today, there have been 612 million confirmed cases of coronavirus disease (COVID-19) around the world, with over 6 million fatalities. Tecovirimat (TPOXX) is an anti-viral drug, and it was the first drug approved for the treatment of anti-pox virus in the US. However, the effectiveness of this drug against COVID-19 has not yet been explored. Since TPOXX is an anti-viral drug, an attempt has been made to determine its ability to act as a COVID inhibitor. Recent medical advances have resulted in the development of nano cage-based drug delivery. Drug delivery clusters based on nano cages have recently been used in the medical industry. As such, we used DFT coupled to the B3LYP/LANL2DZ basis set to study the adsorption behavior of the anti-viral drug TPOXX on Au/Ag/Pt⋯SiO2loaded silica nanocomposites. In order to identify the active site of the molecule, we have used the frontier molecular orbital (FMO) theory of molecular electrostatic potential (MEP). The compound and its complexes obey Lipinski's rule of five and have good drug-likeness properties based on the bioactivity evaluation. The biological properties of organic molecules and nano metal clusters were compared. The TPOXX with its nanocomposites was also studied in terms of Electron Localization Function (ELF) and Localized Orbital Locator (LOL). Molecular docking was performed for both pure molecule and its silica nanocomposites-doped derivatives with the chosen proteins to discuss the protein-ligand binding properties. These results could be more helpful in designing the drug and exploring its application for the inhibition of SARS-CoV-2.
Collapse
Affiliation(s)
- Nivetha G F
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, 635205, India
| | - Vetrivelan V
- Department of Physics, Government College of Engineering, Srirangam, Tiruchirappalli, 620012, Tamilnadu, India
| | - Govindammal M
- Department of Physics, Government Arts College, Dharmapuri, 636705, India
| | - Muthu S
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - Prasath M
- Department of Physics, Periyar University Centre for Post Graduate and Research Studies, Dharmapuri, 635205, India
| |
Collapse
|
5
|
Vetrivelan V, Sakthivel S, Muthu S, Al-Saadi AA. Non-covalent interaction, adsorption characteristics and solvent effect of procainamide anti-arrhythmias drug on silver and gold loaded silica surfaces: SERS spectroscopy, density functional theory and molecular docking investigations †. RSC Adv 2023; 13:9539-9554. [PMID: 36968042 PMCID: PMC10035408 DOI: 10.1039/d3ra00514c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023] Open
Abstract
First-principle calculations were systematically carried out to explore the structural and electronic properties of the non-covalent interaction of procainamide (PA) anti-arrhythmias drug molecules on silver-loaded and gold-loaded silica nanostructures. Computed adsorption energies presented a higher affinity of PA towards the Ag–SiO2 as compared with Au–SiO2 surfaces. The non-covalent interaction analysis revealed a weak van der Waals type of forces and hydrogen bonding, associated with a noticeable repulsive steric interaction. It was conceived that silver and gold decorated silica can be used for drug administration in biological systems due to the fact that their frontier molecular orbital energy levels were considerably altered upon absorption, decreasing the pertinent energy gaps. Moreover, the electronic spectra of PA⋯Ag–SiO2 and PA⋯Au–SiO2 structures investigated in different solvents display a notable blue shift, suggesting that noble metal-loaded silica can be effective in the context of drug delivery systems. Therefore, silver- and gold-decorated silica of three possible drug adsorption scenarios was fully analyzed to realize the associated bioactivity and drug likeness. Theoretical findings suggest that Ag- and Au–SiO2 nanocomposites can be considered potential drug delivery platforms for procainamide in medication protocols. The structural and electronic properties of the non-covalent interaction of procainamide (PA) anti-arrhythmias drug molecules on silver-loaded and gold-loaded silica nanostructures were explored using first-principle calculations.![]()
Collapse
Affiliation(s)
- V. Vetrivelan
- Department of Physics, Thanthai Periyar Government Institute of TechnologyVellore 632002India
| | - S. Sakthivel
- Department of Physics, Panimalar Engineering CollegeChennai600 123TamilnaduIndia
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts CollegeCheyyar 604 407TamilnaduIndia
| | - Abdulaziz A. Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum & MineralsDhahran 31261Saudi Arabia
| |
Collapse
|
6
|
|