1
|
Hassan AU, Sumrra SH, Zubair M, Mohyuddin A, Mustafa G. Design and Exploration of Benzene Like Azobis Triazoles for Long-range Push-Pull Photo-Switching Attributes. J Fluoresc 2025; 35:731-750. [PMID: 38157087 DOI: 10.1007/s10895-023-03532-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/26/2023] [Indexed: 01/03/2024]
Abstract
This research paper presents a comprehensive study on the design and photovoltaic parameters of azobenzene type 24 photo switches (PSs) of triazole by density functional theory (DFT). The focus was on investigating how to create a long-range push-pull effect of different substituents on the PS properties for their application in photovoltaics by further substituent decoration. Their range of values for the maximum wavelength (λmax) ranged 315-556 nm while their HOMO-LUMO energies (Egaps) were 0.57-6.35eV. The stability of the PS was evaluated by measuring hardness (η) and softness (σ) values. Additionally, photovoltaic parameters such as open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and maximum power (Pmax) were calculated to assess the performance of the PS as photovoltaic materials. The results revealed that PSs 6 exhibited promising photovoltaic parameters to include Voc values ranging from 0.4-1.63eV, FF values ranging from 0.5438-0.929, Jsc values ranging from 19.27-50.75 mA/cm2, and Pmax values ranging from 14.72-75.91W. This indicates its potential as an efficient light-harvesting material for photovoltaic applications. Moreover, this study presents a pioneering investigation on the correlation between rotational velocity (R) and Mayer bond index (MBI) for the first time. The findings revealed a significant correlation between R and MBI, providing valuable insights into the structural dynamics of the PS. This novel finding opens up new avenues for understanding the structural dynamics of PS and their potential applications in various fields, including photovoltaics. The study provides valuable insights into the structure-property relationships of azobenzene-based PS and their suitability for photovoltaic devices. Further investigations are warranted to optimize the design of the PS, enhance their photovoltaic performance, and explore the underlying mechanisms of the correlation between R and MBIs.
Collapse
Affiliation(s)
- Abrar U Hassan
- Lunan Research Institute of Beijing Institute of Technology, 888 Zhengtai Road, Tengzhou, 277599, China.
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Punjab, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Punjab, Pakistan
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Ghulam Mustafa
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Punjab, Pakistan
| |
Collapse
|
2
|
de Barros Leite NF, Marques RB, Macedo-Filho A, Rocha GB, Martins EPS. Evaluation of DFT methods for predicting geometries and NMR spectra of Bi(III) dithiocarbamate complexes with antitumor properties. J Mol Model 2024; 30:177. [PMID: 38775913 DOI: 10.1007/s00894-024-05969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
CONTEXT Bismuth complexes with dithiocarbamate ligands have attracted attention because of their biological applications, such as antimicrobial, antileishmanial, and anticancer properties. These complexes have high cytotoxic activity against cancer cells, being more active than the standard drugs cisplatin, doxorubicin, and tamoxifen. In the present study, we investigated the ability of some DFT methods to reproduce the geometries and NMR spectra of the Bi(III) dithiocarbamate complexes, selected based on their proven antitumor activity. Our investigation revealed that the M06-L/def2-TZVP/ECP/CPCM method presented good accuracy in predicting geometries, while the TPSSh/def2-SVP/ECP/CPCM method proved effective in analyzing the 13C NMR spectra of these molecules. In general, all examined methods exhibited comparable performance in predicting 1H NMR signals. METHODS Calculations were performed with the Gaussian 09 program using the def2-SVP and def2-TZVP basis sets, employing relativistic effective core potential (ECP) for Bi and using the CPCM solvent model. The exchange-correlation functionals BP86, PBE, OLYP, M06-L, B3LYP, B3LYP-D3, M06-2X, TPSSh, CAM-B3LYP, and ωB97XD were used in the study. Geometry optimizations were started from crystallographic structures available at the Cambridge Structural Database. The theoretical results were compared with experimental data using the mean root-mean-square deviation (RMSD), mean absolute deviations (MAD), and linear correlation coefficient (R2).
Collapse
Affiliation(s)
| | | | | | - Gerd Bruno Rocha
- Chemistry Department, Exact and Natural Sciences Center, Federal University of Paraíba, João Pessoa, Brazil
| | - Evandro P S Martins
- Graduate Program in Chemistry, State University of Piaui, Teresina, PI, Brazil.
- State University of Piauí, Piripiri, PI, 64260-000, Brazil.
| |
Collapse
|
3
|
Hassan AU, Sumrra SH, Mohyuddin A, Nkungli NK, Alhokbany N. Realizing the effect of s-block metals on a charge transfer crystal of indol-2-one for enhanced NLO responses with efficient energetic offsets. J Mol Model 2024; 30:126. [PMID: 38581440 DOI: 10.1007/s00894-024-05923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
CONTEXT Due to their unique photophysical properties, organic charge transfer crystals are becoming promising materials for next-generation optoelectronic devices. This research paper explores the impact of s-block metals on a charge transfer crystal of indol-2-one for enhanced nonlinear optical (NLO) responses with efficient energetic offsets. The study reveals that alkali metals can enhance NLO performance due to their free electrons. METHOD The Perdew-Burke-Ernzerhof functional of DFT with dispersion correction (D3) was used, and the λmax values ranged between 596 and 669 nm, with the highest value for dichloromethane (DCM). Leveraging the unique properties of metals allowed for the development of nonlinear optical materials with improved performance and versatility. Softness (σ) values provide insight into electron density changes, with higher values indicating a greater tendency for changes and lower values indicating the opposite. The NLO results for the chromophores MMI1-MMI6 show varying linear polarizability (< α0 >) along with their first (β0) and second (γ0) hyperpolarizabilities. Chromophore MMI4 stands out with the highest NLO performance, having two potassium (K) atoms. Its < α0 > , β0, and γ0 values of 4.19, 7.09, and 17.43 (× 10-24 e.s.u), respectively, indicate a significant enhancement in NLO response compared to the other chromophores. The transitions involving (O20)LP → (C3-N5)π* and (O19)LP → (N12-C13)π* exhibit the highest level of stabilization, followed by (O23)π → (C10-C11)π*, while (C6-N12)π → (C6-C7)π* shows the lowest level of stabilization for chromophore MMI4. The present research work is facile in its nature, and it can be helpful for synthetic scientist to design the new materials for uniting crystal properties with metal doping for efficient NLO devices.
Collapse
Affiliation(s)
- Abrar U Hassan
- Lu'nan Research Institute of Beijing Institute of Technology, 888 Zhengtai Road, Tengzhou, 277599, People's Republic of China.
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Punjab, Pakistan.
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Nyiang K Nkungli
- Department of Chemistry, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Bamenda, Cameroon
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Hassan AU, Sumrra SH. Structure-based screening of sp 2 hybridized small donor bridges as donor: acceptor switches for optical and photovoltaic applications: DFT way. J Mol Model 2024; 30:36. [PMID: 38206469 DOI: 10.1007/s00894-024-05836-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
CONTEXT This research aims to investigate the potential of pyrazine-based small donor moieties as donor-acceptor switches for optical and photovoltaic applications. The designed organic dyes have a high light harvesting efficiency (LHE) and can potentially generate significant electrical energy. METHODS The study focuses on understanding the structural and electronic properties of these dyes through the analysis of dihedral angles, bond lengths, and energies of frontier molecular orbitals The UV-Vis spectroscopy parameters of the designed organic dyes revealed their absorption characteristics, including transition energies, wavelengths (λmax), and oscillator strengths (f). The photovoltaic properties of the developed organic dyes show a range of values: a range of 0.95-0.99 for LHE and a range of 1.77-33.02 W for maximum power output (Pmax) with the highest value for dye DDP5. For their stabilization energies, their natural bond orbitals had values ranging from 0.56 to 128.48 kcal/mol, their E(j)E(i) values from 0.22 to 1.29 a.u, and their Fi,j values from 0.024 to 0.213 kcal/mol. Out of all dyes, the DDP5 produced highest push-pull effect and can be good choice for further studies. The design of these novel organic materials for effective and economical solar energy conversion will be aided by evaluating the potential of 5,10-diphenyl-5,10-dihydrophenazine as a donor moiety and determining the structure-property correlations controlling the photovoltaic performance of the compounds.
Collapse
Affiliation(s)
- Abrar U Hassan
- Lunan Research Institute, Beijing Institute of Technology, 888 Zhengtai Road, Tengzhou, 277599, China.
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Punjab, Pakistan.
| |
Collapse
|
5
|
Hassan AU, Sumrra SH, Mustafa G, Noreen S, Ali A, Sara S, Imran M. Enhancing NLO performance by utilizing tyrian purple dye as donor moiety in organic DSSCs with end capped acceptors: A theoretical study. J Mol Graph Model 2023; 124:108538. [PMID: 37327646 DOI: 10.1016/j.jmgm.2023.108538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
A series of new organic dyes (T1-T6) with nonfullerene acceptors have been theoretically designed around the chemical structure of tyrian purple (T) natural dye. For their ground state energy parameters, all the molecular geometries of those dyes were optimized by density functional theory (DFT) at its Becke, 3-parameter, Lee-Yang-Parr (B3LYP) level of theory with 6-31G+(d,p) basis sets. When benchmarking against several long range and range separated levels of theory, the Coulomb attenuated B3LYP (CAM-B3LYP) produced most accurate absorption maxima (λmax) value to that of T so it was further employed for further Time dependent DFT (TD-DFT) calculations. Frontier molecular orbitals (FMOs) with natural bond orbital (NBO) studies were used to study their intra molecular charge transfer (ICT). All of the dyes had their energy gaps (Eg) values between their FMOs to range around 0.96-3.39 eV, whereas the starting reference dye had an Eg of 1.30 eV. Their ionization potential (IP) values were ranged to be 3.07-7.25 eV which indicated their nature to loss electrons. The λ max in chloroform was marginally red-shifted with a value 600-625 from T (580 nm). The dye T6 showed its highest linear polarizability (<α>), and first and second order hyperpolarizabilities (β and γ). The synthetic experts can find the present research to design finest NLO materials for current and future uses.
Collapse
Affiliation(s)
- Abrar U Hassan
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan.
| | - Ghulam Mustafa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Sadaf Noreen
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Asad Ali
- Department of Chemical Engineering, University of Gujrat, Gujrat 50700, Pakistan
| | - Syeda Sara
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61514, P. O. Box 9004, Saudi Arabia; Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| |
Collapse
|
6
|
Hadi H, Louis H, Gber TE, Ogungbemiro FO. Molecular modeling of the structural, electronic, excited state dynamic, and the photovoltaic properties of the oligomers of n-corannulene (n = 1-4). Heliyon 2023; 9:e20706. [PMID: 37860554 PMCID: PMC10582301 DOI: 10.1016/j.heliyon.2023.e20706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Despite the fact that n-corannulene oligomers (n = 1-4) have a variety of electronic and optical properties, including the ability to be tuned and the potential to be used as light-harvesting materials, there has not been a computational assessment of their structural, electronic, and optical properties. Herein, a computational evaluation of the concerned materials regarding their potent use in solar cell technology has been conducted via DFT/CAM-B3LYP and M062X/6-311+G level of theory. It was observed that the calculated 1st frequency of the n-Corannulene (n = 1-4) were 144.15, 106.36, 48.96 and 42.21 respectively. Notably, the computed cohesive energy value increased as the number of Corannulene units increases while the electronic characteristics revealed that the chemical activity of the structures increased as the number of oligomers rose. Both calculation techniques demonstrate that the number of n-Corannulene oligomers increases the HOMO energy while decreasing the LUMO energy based on the external electric field (EF) effect. The findings demonstrated that as EF intensity increases, the energy gap (Eg/eV = |EHOMO-ELUMO|) of these molecular systems decreases which can be attributed to a decrease in the electron transfer potential barrier. The 4-Corannulene systems showed the highest wave length of adsorption for the investigated compound at 546.18 nm, with the highest oscillator strength of 0.2708 and the lowest transition energy of 2.2700 eV, arising from S0-S1 (H-L) and the highest major percentage contribution of 93.34 % in comparison to the investigated compounds. We are hopeful that this research will help experimental researchers understand the potential of n-Corannulene, specifically 4-corannulene, as powerful material for a variety of applications ranging from solar cell, photovoltaic properties and many others.
Collapse
Affiliation(s)
- Hamid Hadi
- Department of Chemistry, Physical Chemistry group, Lorestan University, Khorramabad, Iran
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Festus O. Ogungbemiro
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| |
Collapse
|
7
|
Wang ZY, Fang ZG, Liu LE, Wu TH. Density functional theory studies on properties of cluster Co nMoS (n=1 ~ 5): interatomic interactions, electronic properties, frontier orbitals. J Mol Model 2023; 29:326. [PMID: 37770669 DOI: 10.1007/s00894-023-05730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
CONTEXT To comprehend the microscopic property alterations within the ConMoS cluster (n=1-5), this study investigates its internal interactions, electronic characteristics, and orbital correlations employing density functional theory. Structural optimization and theoretical analysis of the cluster are conducted using the Gaussian09 software package, considering various spin multiplicities and employing the B3LYP/def2tzvp quantum chemical method as the computational standard. The outcomes reveal the optimization of the cluster, resulting in 21 stable configurations while continually acquiring energy from the external environment. Analysis of the interaction region indicator functions, the independent gradient model based on Hirshfeld partition, the localized orbital indicator functions, and the electron localization function reveals a trend toward chemical bonding interactions within the interatomic interaction regions. Moreover, the interatomic forces exhibit a high likelihood of engaging in covalent bonding interactions. Both Co and Mo atoms display greater electron delocalization, facilitating the exchange of electrons with the external environment. The paper discuss electron space range, hardness and softness, polarizability, dipole moment, Mulliken population analysis, density of states, HOMO-LUMO diagram, and UV-Vis spectra. Configuration 5a exhibits the broadest electron delocalization and the highest reactivity. It maintains structural stability in external conditions and displays the most polarized molecules. Metal atoms in this cluster exhibit superior mobility compared to non-metal atoms. We elucidate the electron density aggregation region within the cluster. Configuration 1a demonstrates the highest correlation with molar absorption coefficient for its peak. Analyzing the HOMO and LUMO orbital delocalization index and center-of-mass distances revealed that the front orbits of configuration 5a exhibited a broad distribution in space and the minimum center-of-mass distance. METHODS This study presents a theoretical investigation of Co-Mo-S clusters employing density functional theory (DFT). DFT is a prevalent method for exploring the electronic structure and characteristics of atoms, molecules, and solids. The paper examines cluster attributes encompassing interatomic interactions, electronic properties, and frontier orbitals. Gaussian09 software is employed for optimizing cluster structures, while the analysis is augmented using Multiwfn wave function analysis software. By harnessing these theoretical and computational tools, it aims to delve deeper into cluster properties, yielding valuable insights.
Collapse
Affiliation(s)
- Zhi-Yao Wang
- School of Chemical Engineering, University of science and Technology Liaoning, Anshan, 114051, China
| | - Zhi-Gang Fang
- School of Chemical Engineering, University of science and Technology Liaoning, Anshan, 114051, China.
| | - Li-E Liu
- School of Chemical Engineering, University of science and Technology Liaoning, Anshan, 114051, China
| | - Ting-Hui Wu
- School of Chemical Engineering, University of science and Technology Liaoning, Anshan, 114051, China
| |
Collapse
|
8
|
El Mhamedi I, El Malki Z, El Karkri A, Bouachrine M. Analysis molecular design of novel D-A-Di-A-D conjugated compounds for high-efficiency organic solar cells. J Mol Model 2023; 29:324. [PMID: 37743439 DOI: 10.1007/s00894-023-05729-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
CONTEXT The work described in this section uses DFT/TD-DFT/B3LYP/6-31G (d,p) (density functional theory and time-dependent density functional theory) to study and simulate the structural, optoelectronic, and optical properties of a series of conjugated compounds based on a modular D-A-Di-A-D architecture. These compounds integrate the D donor unit (carbazole), the A acceptor unit (benzothiadiazole) and various Di donor units. Using AMPS-1D (analysis of micronic structure and photonics), work has been carried out to evaluate the photovoltaic performance of these conjugated compounds in the context of organic solar cells. The compounds show variable performance in terms of energy conversion efficiency, ranging from 7.11 to 11.70%. The addition of a PEDOT layer between the active layer and the anode results in a significant improvement in photovoltaic performance, with energy conversion efficiencies of up to 15.31%, the highest value achieved. The use of ZnO as an intermediate layer remarkably improves photovoltaic performance for all compounds, with notable energy conversion efficiencies reaching 17.13%, 17.20%, and 18%. All in all, the compounds studied present promising prospects as viable candidates for organic block heterojunction (BHJ) solar cell applications. METHODS DFT/TD-DFT/B3LYP/6-31G (d,p), these acronyms stand for the computational methods used to study the properties of compounds. DFT, for "Density Functional Theory", is a quantum computation method used to describe the electronic and structural properties of molecular systems. TD-DFT, for "Time-Dependent Density Functional Theory", is an extension of DFT that allows the treatment of optical and excitation properties. B3LYP is a density functional frequently used in DFT to calculate molecular properties. In addition, 6-31G (d,p) refers to a basic wave function used to approximate the distribution of electrons in molecules. AMPS-1D, or "Analysis of Micro and Photonic Structure", is a modeling tool for studying the photovoltaic properties of multilayer structures, particularly in the context of organic solar cells.
Collapse
Affiliation(s)
- Imane El Mhamedi
- High School of Technology, (ESTM), Modeling, Materials and Systems Control (MMSC), Computer Engineering and Intelligent Electrical Systems (2ISEI), Moulay Ismail University, Meknes, Morocco.
| | - Zakaria El Malki
- High School of Technology, (ESTM), Modeling, Materials and Systems Control (MMSC), Computer Engineering and Intelligent Electrical Systems (2ISEI), Moulay Ismail University, Meknes, Morocco
| | - Anass El Karkri
- High School of Technology, (ESTM), Modeling, Materials and Systems Control (MMSC), Computer Engineering and Intelligent Electrical Systems (2ISEI), Moulay Ismail University, Meknes, Morocco
| | - Mohammed Bouachrine
- MCNS Laboratory, Faculty of Science, University Moulay Ismail, Meknes and EST Khenifra, Sultan Moulay Slimane University, Beni Mellal, Morocco
| |
Collapse
|
9
|
Liu Q. Theoretical research on the dye molecules with different π-bridge structures. J Mol Model 2023; 29:248. [PMID: 37450056 DOI: 10.1007/s00894-023-05655-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
CONTEXT Since 1991 when Grätzel et al. improved the conversion efficiency of dye-sensitized solar cells to 7.1% by applying nano technology as the first time, the researches on dye-sensitized solar cells have received widely attentions. The organic dye without precious metals has a lower cost, which is easily to get synthesized and its structure is easily decorated, owing a higher photoelectric conversion efficiency at the same time. Therefore, in recent years, the organic dye has attracted people's attentions more and more. In order to better understand the relationship between structure and properties of dye molecules, with ZL003 as a prototype, molecular modifications are then made and a scheme, with rigid fused π-bridge comprising electron-rich and deficient segments. The calculated results indicate that the π-bridge containing dithienopyrrolobenzothiadiazole and dipyrrolo-dithienobenzothiadiazole as π-bridge has been demonstrated to be successful to significantly redshift the absorption maximum wavelength, extend the lifetime of the first excited state, and decrease the energy gap between the highest occupied molecule orbital (HOMO) and the lowest unoccupied molecule orbital (LUMO). It is hoped that the calculation result of this paper would provide theoretical basis for the experimental synthesis of more efficient dye molecules. METHOD All calculations were performed in Gaussian 09 program package. The ground state geometries (S0) and the first excited state (S1) were optimized using density function theory (DFT) with the hybrid function B3LYP functional, coupled with the 6-31G(d, p) basis set for optimization of molecule ground state conformations. TD-DFT calculations of excited state energies and absorption spectra were performed using MPWPW91 functional combined with the 6-31 + G (d) basis set.
Collapse
Affiliation(s)
- Qun Liu
- Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering & Material, Handan University, Handan, 056005, People's Republic of China.
| |
Collapse
|
10
|
Creating intense and refined NLO responses by utilizing dual donor structural designs in A-π-D-π-D-π-A type organic switches: computed device parameters. Struct Chem 2023. [DOI: 10.1007/s11224-023-02138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|