1
|
Fendrych K, Górska-Ratusznik A, Smajdor J. Electrochemical Assays for the Determination of Antidiabetic Drugs-A Review. MICROMACHINES 2023; 15:10. [PMID: 38276837 PMCID: PMC10820374 DOI: 10.3390/mi15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
This article presents the current state of knowledge regarding electrochemical methods for determining the active substances within drugs that are used in the treatment of type 1 and type 2 diabetes. Electrochemical methods of analysis, due to their sensitivity and easiness, are a great alternative to other, usually more expensive analytical assays. The determination of active substances mentioned in this review is based on oxidation or reduction processes on the surface of the working electrode. A wide variety of working electrodes, often modified with materials such as nanoparticles or conducting polymers, have been used for the highly sensitive analysis of antidiabetic drugs. The presented assays allow us to determine the compounds of interest in various samples, such as pharmaceutical products or different human bodily fluids.
Collapse
Affiliation(s)
- Katarzyna Fendrych
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Anna Górska-Ratusznik
- Lukasiewicz Research Network—Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| | - Joanna Smajdor
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Cracow, Poland
| |
Collapse
|
2
|
Khaleque MA, Hossain MI, Ali MR, Bacchu MS, Saad Aly MA, Khan MZH. Nanostructured wearable electrochemical and biosensor towards healthcare management: a review. RSC Adv 2023; 13:22973-22997. [PMID: 37529357 PMCID: PMC10387826 DOI: 10.1039/d3ra03440b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
In recent years, there has been a rapid increase in demand for wearable sensors, particularly these tracking the surroundings, fitness, and health of people. Thus, selective detection in human body fluid is a demand for a smart lifestyle by quick monitoring of electrolytes, drugs, toxins, metabolites and biomolecules, proteins, and the immune system. In this review, these parameters along with the main features of the latest and mostly cited research work on nanostructured wearable electrochemical and biosensors are surveyed. This study aims to help researchers and engineers choose the most suitable selective and sensitive sensor. Wearable sensors have broad and effective sensing platforms, such as contact lenses, Google Glass, skin-patch, mouth gourds, smartwatches, underwear, wristbands, and others. For increasing sensor reliability, additional advancements in electrochemical and biosensor precision, stability in uncontrolled environments, and reproducible sample conveyance are necessary. In addition, the optimistic future of wearable electrochemical sensors in fields, such as remote and customized healthcare and well-being is discussed. Overall, wearable electrochemical and biosensing technologies hold great promise for improving personal healthcare and monitoring performance with the potential to have a significant impact on daily lives. These technologies enable real-time body sensing and the communication of comprehensive physiological information.
Collapse
Affiliation(s)
- M A Khaleque
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M I Hossain
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M R Ali
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M S Bacchu
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| | - M Aly Saad Aly
- Department of Electrical and Computer Engineering at Georgia Tech Shenzhen Institute (GTSI), Tianjin University Shenzhen Guangdong 518055 China
| | - M Z H Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology Jashore 7408 Bangladesh
- Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and technology Jashore 7408 Bangladesh
| |
Collapse
|
3
|
Hu H, Wu S, Wang C, Wang X, Shi X. Electrochemical behaviour of cellulose/reduced graphene oxide/carbon fiber paper electrodes towards the highly sensitive detection of amitrole. RSC Adv 2023; 13:1867-1876. [PMID: 36712608 PMCID: PMC9830654 DOI: 10.1039/d2ra07662d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
Amitrole is a non-selective triazole herbicide that is widespread used to control a variety of weeds in agriculture, but it may pollute the environment and do harm to organisms. Thus, it is of critical significance to enlist a low-cost, sensitive, stable and renewable method to detect amitrole. In this paper, electrochemical experiments were carried out using carbon fibers/reduced graphene oxide/cellulose paper electrodes, which demonstrated good electrocatalytic performance for amitrole detection. The electrochemical process of amitrole on the surface of the reduced paper electrode was a quasi-reversible reaction controlled by diffusion. Cyclic voltammetry and the amperometric i-t curve method were used for amitrole determination at a micro molar level and higher-concentration range with the following characteristics: linear range 5 × 10-6 mol L-1 to 3 × 10-5 mol L-1, detection limit 2.44 × 10-7 mol L-1. In addition, the relative standard deviation of repeatability is 3.74% and of stability is 4.68%. The reduced paper electrode with high sensitivity, low detection limit, good stability and repeatability provides novel ideas for on-site amitrole detection in food and agriculture.
Collapse
Affiliation(s)
- Hui Hu
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan UniversityWuhan 430079China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and TechnologyWuhan 430081China
| | - Cheng Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of TechnologyGuangzhou 510640China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of TechnologyGuangzhou 510640China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan UniversityWuhan 430079China
| |
Collapse
|
4
|
Smajdor J, Paczosa-Bator B, Piech R. Advances on Hormones and Steroids Determination: A Review of Voltammetric Methods since 2000. MEMBRANES 2022; 12:1225. [PMID: 36557132 PMCID: PMC9782681 DOI: 10.3390/membranes12121225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This article presents advances in the electrochemical determination of hormones and steroids since 2000. A wide spectrum of techniques and working electrodes have been involved in the reported measurements in order to obtain the lowest possible limits of detection. The voltammetric and polarographic techniques, due to their sensitivity and easiness, could be used as alternatives to other, more complicated, analytical assays. Still, growing interest in designing a new construction of the working electrodes enables us to prepare new measurement procedures and obtain lower limits of detection. A brief description of the measured compounds has been presented, along with a comparison of the obtained results.
Collapse
|
5
|
Šišoláková I, Petruš O, Shepa J, Farka Z, Oriňak A, Oriňaková R. Colloidal lithography as a novel approach for the development of Ni-nanocavity insulin sensor. Sci Rep 2022; 12:11020. [PMID: 35773298 PMCID: PMC9246938 DOI: 10.1038/s41598-022-15283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, a highly sensitive, fast, and selective enzyme-free electrochemical sensor based on the deposition of Ni cavities on conductive glass was proposed for insulin detection. Considering the growing prevalence of diabetes mellitus, an electrochemical sensor for the determination of insulin was proposed for the effective diagnosis of the disease. Colloidal lithography enabled deposition of nanostructured layer (substrate) with homogeneous distribution of Ni cavities on the electrode surface with a large active surface area. The morphology and structure of conductive indium tin oxide glass modified with Ni cavities (Ni-c-ITO) were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The diameter of the resulting cavities was approximately 500 nm, while their depth was calculated at 190 ± 4 nm and 188 ± 18 nm using AFM and SEM, respectively. The insulin assay performance was evaluated by cyclic voltammetry. Ni-c-ITO exhibited excellent analytical characteristics, including high sensitivity (1.032 µA µmol-1 dm3), a low detection limit (156 µmol dm-3), and a wide dynamic range (500 nmol dm-3 to 10 µmol dm-3). Finally, the determination of insulin in buffer with interferents and in real blood serum samples revealed high specificity and demonstrated the practical potential of the method.
Collapse
Affiliation(s)
- Ivana Šišoláková
- Department of Physical Chemistry, University of P.J. Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Ondrej Petruš
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovak Republic.
| | - Jana Shepa
- Department of Physical Chemistry, University of P.J. Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Andrej Oriňak
- Department of Physical Chemistry, University of P.J. Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Renáta Oriňaková
- Department of Physical Chemistry, University of P.J. Šafárik in Košice, Moyzesova 11, 040 01, Košice, Slovak Republic
| |
Collapse
|
6
|
Abazar F, Sharifi E, Noorbakhsh A. Antifouling properties of carbon quantum dots-based electrochemical sensor as a promising platform for highly sensitive detection of insulin. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 203:114029. [DOI: 10.1016/j.bios.2022.114029] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
8
|
An electrochemical sensing platform of cobalt oxide@SiO2/C mesoporous composite for the selective determination of hydrazine in environmental samples. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Çimen D, Bereli N, Kartal F, Denizli A. Molecularly Imprinted Polymer-Based Quartz Crystal Microbalance Sensor for the Clinical Detection of Insulin. Methods Mol Biol 2021; 2359:209-222. [PMID: 34410672 DOI: 10.1007/978-1-0716-1629-1_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we reported the design of a quartz crystal microbalance (QCM) sensors for selective insulin detection. In the first step, N-methacryloyl-(L) 3-histidine methyl ester (MAH) monomer was formed a complex with insulin. Then, 2-hydroxyethyl methacrylate and ethylene glycol dimethacrylate were mixed with MAH:insulin complex. Insulin-imprinted and non-imprinted QCM sensors were synthesized by ultraviolet polymerization for the insulin detection. Insulin-imprinted QCM sensors was characterized by the contact angle measurements, atomic force microscopy and ellipsometry. Limit of detection (LOD) was found as 0.00158 ng/mL for the insulin-imprinted QCM sensors. Selectivity of insulin-imprinted and non-imprinted QCM sensors was carried in the presence of glucagon and aprotinin. Insulin-imprinted QCM sensor for insulin detection was also examined in the artificial plasma.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nilay Bereli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatma Kartal
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
10
|
Šišoláková I, Hovancová J, Oriňaková R, Oriňak A, Trnková L, Třísková I, Farka Z, Pastucha M, Radoňák J. Electrochemical determination of insulin at CuNPs/chitosan-MWCNTs and CoNPs/chitosan-MWCNTs modified screen printed carbon electrodes. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Chang AS, Memon NN, Amin S, Chang F, Aftab U, Abro MI, dad Chandio A, Shah AA, Ibupoto MH, Ansari MA, Ibupoto ZH. Facile Non‐enzymatic Lactic Acid Sensor Based on Cobalt Oxide Nanostructures. ELECTROANAL 2019. [DOI: 10.1002/elan.201800865] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Sidra Amin
- National Centre of Excellence in Analytical ChemistryUniversity of Sindh Jamshoro - 7f080 Pakista
| | - Fouzia Chang
- National Centre of Excellence in Analytical ChemistryUniversity of Sindh Jamshoro - 7f080 Pakista
| | - Umair Aftab
- Mehran University of Engineering and Technology Jamshoro 7f080 Pakistan
| | | | - Ali dad Chandio
- Department of MetallurgyNED University of Engineering and Technology Karachi 7eb70 Pakistan
| | - Aqeel Ahmed Shah
- Department of MetallurgyNED University of Engineering and Technology Karachi 7eb70 Pakistan
| | | | | | | |
Collapse
|
12
|
Kartal F, Çimen D, Bereli N, Denizli A. Molecularly imprinted polymer based quartz crystal microbalance sensor for the clinical detection of insulin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:730-737. [DOI: 10.1016/j.msec.2018.12.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 12/19/2018] [Accepted: 12/25/2018] [Indexed: 10/27/2022]
|
13
|
Abstract
Good glucose management through an insulin dose regime based on the metabolism of glucose helps millions of people worldwide manage their diabetes. Since Banting and Best extracted insulin, glucose management has improved due to the introduction of insulin analogues that act from 30 minutes to 28 days, improved insulin dose regimes, and portable glucose meters, with a current focus on alternative sampling sites that are less invasive. However, a piece of the puzzle is still missing-the ability to measure insulin directly in a Point-of-Care device. The ability to measure both glucose and insulin concurrently will enable better glucose control by providing an improved estimate for insulin sensitivity, minimizing variability in control, and maximizing safety from hypoglycaemia. However, direct detection of free insulin has provided a challenge due to the size of the molecule, the low concentration of insulin in blood, and the selectivity against interferants in blood. This review summarizes current insulin detection methods from immunoassays to analytical chemistry, and sensors. We also discuss the challenges and potential of each of the methods towards Point-of-Care insulin detection.
Collapse
|
14
|
Mafuwe PT, Moyo M, Mugadza T, Shumba M, Nyoni S. Cobalt oxide nanoparticles anchored polyaniline-appended cobalt tetracarboxy phthalocyanine, modified glassy carbon electrode for facile electrocatalysis of amitrole. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4131-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
15
|
A nickel nanoparticle/carbon nanotube-modified carbon fiber microelectrode for sensitive insulin detection. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3816-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Ternary Pt-Co-Cu nanodendrites for ultrasensitive voltammetric determination of insulin at very low working potential. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2195-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Nagles E, Ibarra L, Llanos JP, Hurtado J, Garcia-Beltrán O. Development of a novel electrochemical sensor based on cobalt(II) complex useful in the detection of dopamine in presence of ascorbic acid and uric acid. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.01.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Noorbakhsh A, Alnajar AIK. Antifouling properties of reduced graphene oxide nanosheets for highly sensitive determination of insulin. Microchem J 2016. [DOI: 10.1016/j.microc.2016.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
19
|
Yu Y, Guo M, Yuan M, Liu W, Hu J. Nickel nanoparticle-modified electrode for ultra-sensitive electrochemical detection of insulin. Biosens Bioelectron 2016; 77:215-9. [DOI: 10.1016/j.bios.2015.09.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/28/2022]
|
20
|
Li T, Liu Z, Wang L, Guo Y. Gold nanoparticles/Orange II functionalized graphene nanohybrid based electrochemical aptasensor for label-free determination of insulin. RSC Adv 2016. [DOI: 10.1039/c6ra00329j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanocomposites, gold nanoparticles on Orange II functionalized graphene (AuNPs/O-GNs), were developed to modify the electrode surface for anchoring an insulin binding aptamer.
Collapse
Affiliation(s)
- Tingting Li
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Zhiguang Liu
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Li Wang
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yujing Guo
- Institute of Environmental Science
- College of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
21
|
Vittal R, Ho KC. Cobalt Oxide Electrodes-Problem and a Solution Through a Novel Approach using Cetyltrimethylammonium Bromide (CTAB). CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2015. [DOI: 10.1080/01614940.2015.1035192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Electrosynthesis of high-density polythiophene nanotube arrays and their application for sensing of riboflavin. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.08.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Electrocatalytic determination of traces of insulin using a novel silica nanoparticles-Nafion modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Lin Y, Hu L, Li L, Wang K. Facile synthesis of nickel hydroxide–graphene nanocomposites for insulin detection with enhanced electro-oxidation properties. RSC Adv 2014. [DOI: 10.1039/c4ra06648k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study describes a facile and effective one-pot route to synthesize structurally uniform and electrochemically active nickel hydroxide–graphene nanocomposites (Ni(OH)2–GN) and investigates the electrocatalytic activity toward the oxidation of insulin.
Collapse
Affiliation(s)
- Yuqing Lin
- Department of Chemistry
- Capital Normal University
- Beijing 100048, China
| | - Lianglu Hu
- College of Chemistry and Materials Science
- Anhui Normal University
- Wuhu 241000, China
| | - Linbo Li
- Department of Chemistry
- Capital Normal University
- Beijing 100048, China
| | - Keqing Wang
- Department of Chemistry
- Capital Normal University
- Beijing 100048, China
| |
Collapse
|
25
|
Singh V, Krishnan S. An electrochemical mass sensor for diagnosing diabetes in human serum. Analyst 2014; 139:724-8. [DOI: 10.1039/c3an01542d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Synthesis of Co/TiO 2 Nanocomposite and its Use in Construction of a Sensitive and Selective Sensor for Determination of Ciprofloxacin. ACTA ACUST UNITED AC 2013. [DOI: 10.4028/www.scientific.net/amr.829.563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Co/TiO2 nanocomposite was synthesized by a modified sol-gel method. The surface structure and composition of nanoparticles were characterized by scanning electron microscopy (SEM), X-ray powder diffraction analysis (XRD), Fourier transform infrared (FTIR) spectrometry, thermal gravimetric analysis (TGA) and N2 physisorption. A carbon paste electrode (CPE) modified with Co/TiO2 nanocomposite was prepared and used for low level determination of antibiotic ciprofloxacin (CF) using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Under optimized conditions, the modified electrode exhibited a linear response over the concentration range of 0.1 to 70 μM CF, with a detection limit of 0.03 μM. The proposed sensor was applied to the CF determination in serum and urine samples.
Collapse
|
27
|
Yosypchuk O, Barek J, Yosypchuk B. Tubular Detector of Silver Solid Amalgam for Electrochemical Measurements in Flow Systems. ELECTROANAL 2012. [DOI: 10.1002/elan.201200443] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|