1
|
Pandey RR, Chusuei CC. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. Molecules 2021; 26:6674. [PMID: 34771082 PMCID: PMC8587008 DOI: 10.3390/molecules26216674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Carbon nanomaterials (CNMs) have been extensively used as electrochemical sensing composites due to their interesting chemical, electronic, and mechanical properties giving rise to increased performance. Due to these materials' unknown long-term ecological fate, care must be given to make their use tractable. In this review, the design and use of carbon nanotubes (CNTs), graphene, and carbon dots (CDs) as electrochemical sensing electrocatalysts applied to the working electrode surface are surveyed for various biosensing applications. Graphene and CDs are readily biodegradable as compared to CNTs. Design elements for CNTs that carry over to graphene and CDs include Coulombic attraction of components and using O or N atoms that serve as tethering points for attaching electrocatalytically active nanoparticles (NPs) and/or other additives.
Collapse
Affiliation(s)
| | - Charles C. Chusuei
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN 37132, USA;
| |
Collapse
|
2
|
Wang C, Ding D, Jiang X, Zhou B. Electrochemical Sensors Based on Copper–Cadmium Bimetallic Porphyrin Coordination Polymers with Various Cu/Cd Ratios. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821060137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
3
|
Rębiś T, Niemczak M, Płócienniczak P, Pernak J, Milczarek G. Voltammetric sensor based on long alkyl chain tetraalkylammonium ionic liquids comprising ascorbate anion for determination of nitrite. Mikrochim Acta 2021; 188:54. [PMID: 33501519 PMCID: PMC7838138 DOI: 10.1007/s00604-021-04713-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022]
Abstract
An electrochemical sensor was fabricated utilizing ionic liquids possessing cations with long alkyl chains such as trimethyl octadecylammonium and behenyl trimethylammonium and ascorbate anion. The ionic liquids were drop-coated onto the electrode. Thin modifying layers were prepared. Cyclic voltammetric investigations revealed electrostatic interactions between the electrochemical probes and the modified surface, proving that a positive charge was established at the film surface. Hence, negatively charged species such as nitrite can be pre-concentrated on the surface of presented modified electrodes. The fabricated electrodes have been used as a voltammetric sensor for nitrite. Due to the electrostatic accumulation properties of long alkyl cation, the assay exhibits a remarkable improvement in the voltammetric response toward nitrite oxidation. The influence of pH on the electrode response was thoroughly investigated, and the mechanism of the electrode was established. The developed sensor showed a linear electrochemical response in the range 1.0–50 μM with a detection limit of 0.1 μM. The electrode revealed good storage stability, reproducibility, and anti-interference ability. The determination of nitrite performed in curing salts brought satisfactory results. ![]()
Collapse
Affiliation(s)
- Tomasz Rębiś
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Michał Niemczak
- Department of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965, Poznan, Poland
| | - Patrycja Płócienniczak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Juliusz Pernak
- Department of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, 60-965, Poznan, Poland
| | - Grzegorz Milczarek
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| |
Collapse
|
4
|
Suma B P, Pandurangappa M. Graphene oxide/copper terephthalate composite as a sensing platform for nitrite quantification and its application to environmental samples. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04454-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.01.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
6
|
Ibanez JG, Rincón ME, Gutierrez-Granados S, Chahma M, Jaramillo-Quintero OA, Frontana-Uribe BA. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem Rev 2018; 118:4731-4816. [DOI: 10.1021/acs.chemrev.7b00482] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge G. Ibanez
- Departamento de Ingeniería y Ciencias Químicas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Ciudad de México, Mexico
| | - Marina. E. Rincón
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580, Temixco, MOR, Mexico
| | - Silvia Gutierrez-Granados
- Departamento de Química, DCNyE, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada S/N, Pueblito
de Rocha, 36080 Guanajuato, GTO Mexico
| | - M’hamed Chahma
- Laurentian University, Department of Chemistry & Biochemistry, Sudbury, ON P3E2C6, Canada
| | - Oscar A. Jaramillo-Quintero
- CONACYT-Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Apartado Postal 34, 62580 Temixco, MOR, Mexico
| | - Bernardo A. Frontana-Uribe
- Centro Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca 50200, Estado de México Mexico
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito
exterior Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
7
|
Abo-Hamad A, AlSaadi MA, Hashim MA. Eutectic mixture-functionalized carbon nanomaterials for selective amperometric detection of nitrite using modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.01.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Gutiérrez A, Gutierrez FA, Eguílaz M, González-Domínguez JM, Hernández-Ferrer J, Ansón-Casaos A, Martínez MT, Rivas GA. Electrochemical sensing of guanine, adenine and 8-hydroxy-2′-deoxyguanosine at glassy carbon modified with single-walled carbon nanotubes covalently functionalized with lysine. RSC Adv 2016. [DOI: 10.1039/c5ra22556f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthesis and characterization of l-lysine covalently functionalized SWCNT and analytical application for the highly sensitive quantification of guanine, adenine and 8-hydroxy-2′-deoxyguanosine.
Collapse
Affiliation(s)
- Alejandro Gutiérrez
- INFIQC
- Departamento de Físico Química
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Fabiana A. Gutierrez
- INFIQC
- Departamento de Físico Química
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | - Marcos Eguílaz
- INFIQC
- Departamento de Físico Química
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| | | | | | | | | | - Gustavo A. Rivas
- INFIQC
- Departamento de Físico Química
- Facultad de Ciencias Químicas
- Universidad Nacional de Córdoba
- Ciudad Universitaria
| |
Collapse
|
9
|
Kuralay F, Dumangöz M, Tunç S. Polymer/carbon nanotubes coated graphite surfaces for highly sensitive nitrite detection. Talanta 2015; 144:1133-8. [PMID: 26452938 DOI: 10.1016/j.talanta.2015.07.095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/27/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
Abstract
This study describes the preparation of poly(vinylferrocenium)/multi-walled carbon nanotubes (PVF(+)/MWCNTs) coated electrode and its use for sensitive electrochemical nitrite detection. PVF(+)/MWCNTs composite coated disposable pencil graphite electrode (PVF(+)/MWCNTs/PGE) was prepared by electropolymerization of poly(vinylferrocene) (PVF) in the presence of MWCNTs with one-step electropolymerization. Characterization of PVF(+)/MWCNTs/PGE was carried out with scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Then electrochemical detection of nitrite was performed using differential pulse voltammetry (DPV). Nanocomposite coated electrode showed high sensitivity to nitrite with a detection limit of 0.1 μM. The electrode platform was successfully applied to a commercial mineral water sample.
Collapse
Affiliation(s)
- Filiz Kuralay
- Ordu University, Faculty of Arts and Sciences, Department of Chemistry, 52200 Ordu, Turkey.
| | - Mehmet Dumangöz
- Ordu University, Faculty of Arts and Sciences, Department of Chemistry, 52200 Ordu, Turkey
| | - Selma Tunç
- Ordu University, Faculty of Arts and Sciences, Department of Chemistry, 52200 Ordu, Turkey
| |
Collapse
|
10
|
Barsan MM, Ghica ME, Brett CMA. Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta 2015; 881:1-23. [PMID: 26041516 DOI: 10.1016/j.aca.2015.02.059] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 11/24/2022]
Abstract
The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.
Collapse
Affiliation(s)
- Madalina M Barsan
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - M Emilia Ghica
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Christopher M A Brett
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
11
|
Fu L, Yu S, Thompson L, Yu A. Development of a novel nitrite electrochemical sensor by stepwise in situ formation of palladium and reduced graphene oxide nanocomposites. RSC Adv 2015. [DOI: 10.1039/c5ra02661j] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Sensitive electrochemical nitrite sensors based on in situ stepwise formation of Pd nanoparticles and reduced graphene oxide on electrodes.
Collapse
Affiliation(s)
- Li Fu
- Department of Chemistry and Biotechnology
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Hawthorn
- Australia
| | - Shuhong Yu
- Division of Nanomaterials and Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale
- Department of Chemistry
- University of Science and Technology of China
- Hefei
| | - Lachlan Thompson
- Department of Chemistry and Biotechnology
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Hawthorn
- Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology
- Faculty of Science, Engineering and Technology
- Swinburne University of Technology
- Hawthorn
- Australia
| |
Collapse
|
12
|
Yang XJ, Wang YH, Bai J, He XY, Jiang XE. Large mesoporous carbons decorated with silver and gold nanoparticles by a self-assembly method: enhanced electrocatalytic activity for H2O2 electroreduction and sodium nitrite electrooxidation. RSC Adv 2015. [DOI: 10.1039/c4ra14374d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The silver, gold nanoparticles were grown onto poly (diallyldimethyl ammoniumchloride, PDDA)-functionalized large mesoporous carbon (LMC) by simple self-assembly method. AuNPs or AgNPs/PDDA–LMC show superior electrocatalytic activity.
Collapse
Affiliation(s)
- X. J. Yang
- China West Normal University
- Nanchong 637002
- China
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
| | - Y. H. Wang
- China West Normal University
- Nanchong 637002
- China
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
| | - J. Bai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun 130022
- China
| | - X. Y. He
- China West Normal University
- Nanchong 637002
- China
| | - X. E. Jiang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun 130022
- China
| |
Collapse
|