1
|
Damphathik C, Butmee P, Kunpatee K, Kalcher K, Ortner A, Kerr M, Jitcharoen J, Samphao A. An electrochemical sensor for the voltammetric determination of artemisinin based on carbon materials and cobalt phthalocyanine. Mikrochim Acta 2022; 189:224. [PMID: 35585361 DOI: 10.1007/s00604-022-05257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
An electrochemical sensor for the determination of artemisinin has been developed based on a glassy carbon electrode modified with hybrid nanocomposites of cobalt phthalocyanine, graphene nanoplatelets, multi-walled carbon nanotubes and ionic liquids (IL). To improve the sensitivity and selectivity of the sensor, cobalt phthalocyanine (CoPc) was used as an effective redox mediator to promote and catalyze the artemisinin reduction. Furthermore, the graphene nanoplatelets and multi-walled carbon nanotubes were used as excellent conducting supporting materials to improve the sensitivity of the electrochemical sensor. Moreover, IL with a surface charge was also employed to prevent aggregation of the graphene nanoplatelets and multi-walled carbon nanotubes. The analytical signal was generated from the reduction of Co(III)Pc generated by artemisinin. The proposed electrochemical sensor was applied to the detection of artemisinin using differential pulse voltammetry and provided a signal with wide linearity ranging from 1.5-60 μM and 60-600 μM and a detection limit of 0.70 μM (3SD/m). Furthermore, the proposed sensor displayed good repeatability and reproducibility of 2.9-3.0 and 3.1-4.4% RSD, respectively. Applications of the sensor to drug and plant samples demonstrated accuracy in a range of 105-116% recoveries. In addition, the results were in good agreement with those obtained from the HPLC method as a reference technique. Thus, the proposed electrochemical sensor provides a new alternative platform for sensitive and selective determination of artemisinin in the analysis of pharmaceuticals with good precision and accuracy.
Collapse
Affiliation(s)
- Chulalak Damphathik
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Preeyanut Butmee
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Kanjana Kunpatee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, University of Graz, 8010, Graz, Austria
| | - Astrid Ortner
- Institute of Pharmaceutical Sciences, University of Graz, 8010, Graz, Austria
| | - Margaret Kerr
- Department of Chemistry, Worcester State University, 486 Chandler Street, Worcester, MA, 01602, USA
| | - Juthamas Jitcharoen
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand. .,Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
2
|
Viera M, Riquelme J, Aliaga C, Marco JF, Orellana W, Zagal JH, Tasca F. Oxygen Reduction Reaction at Penta-Coordinated Co Phthalocyanines. Front Chem 2020; 8:22. [PMID: 32064248 PMCID: PMC7000627 DOI: 10.3389/fchem.2020.00022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/09/2020] [Indexed: 11/13/2022] Open
Abstract
From the early 60s, Co complexes, especially Co phthalocyanines (CoPc) have been extensively studied as electrocatalysts for the oxygen reduction reaction (ORR). Generally, they promote the 2-electron reduction of O2 to give peroxide whereas the 4-electron reduction is preferred for fuel cell applications. Still, Co complexes are of interest because depending on the chemical environment of the Co metal centers either promote the 2-electron transfer process or the 4-electron transfer. In this study, we synthetized 3 different Co catalysts where Co is coordinated to 5 N atoms using CoN4 phthalocyanines with a pyridine axial linker anchored to carbon nanotubes. We tested complexes with electro-withdrawing or electro-donating residues on the N4 phthalocyanine ligand. The catalysts were characterized by EPR and XPS spectroscopy. Ab initio calculations, Koutecky-Levich extrapolation and Tafel plots confirm that the pyridine back ligand increases the Co-O2 binding energy, and therefore promotes the 4-electron reduction of O2. But the presence of electron withdrawing residues, in the plane of the tetra N atoms coordinating the Co, does not further increase the activity of the compounds because of pull-push electronic effects.
Collapse
Affiliation(s)
- Marco Viera
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Jorge Riquelme
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Carolina Aliaga
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - José F. Marco
- Instituto de Química Física “Rocasolano”, CSIC, Madrid, Spain
| | - Walter Orellana
- Departamento de Ciencias Físicas, Universidad Andrés Bello, Santiago, Chile
| | - José H. Zagal
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Federico Tasca
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
3
|
Penta-coordinated transition metal macrocycles as electrocatalysts for the oxygen reduction reaction. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-019-04489-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
4
|
Highly selective solid-state sensor for iodide based on the combined use of platinum (IV) phthalocyanine and solidified pyridinium ionic liquid. J Solid State Electrochem 2018. [DOI: 10.1007/s10008-018-4159-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Silva N, Calderón S, Páez MA, Oyarzún MP, Koper MT, Zagal JH. Probing the Fen+/Fe(n−1)+ redox potential of Fe phthalocyanines and Fe porphyrins as a reactivity descriptor in the electrochemical oxidation of cysteamine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Riquelme J, Neira K, Marco JF, Hermosilla-Ibáñez P, Orellana W, Zagal JH, Tasca F. Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Koçyiğit N, Özen ÜE, Özer M, Salih B, Özkaya AR, Bekaroğlu Ö. Electrocatalytic Activity of Novel Ball-Type Metallophthalocyanines with Trifluoro Methyl Linkages in Oxygen Reduction Reaction and Application as Zn-Air Battery Cathode Catalyst. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Spindola RF, Zanin H, Macena CS, Contin A, de Cássia Silva Luz R, Damos FS. Evaluation of a novel composite based on functionalized multi-walled carbon nanotube and iron phthalocyanine for electroanalytical determination of isoniazid. J Solid State Electrochem 2016. [DOI: 10.1007/s10008-016-3451-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|