1
|
Shen F, Xiao X, Dai Q, Li H, Zhang X, Huang K, Zhou Y, Xue S, Zhao X. Combining enzymatic biofuel cells with supercapacitors to self-charging hybrid devices. CHEM REC 2025; 25:e202400248. [PMID: 40200663 DOI: 10.1002/tcr.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Indexed: 04/10/2025]
Abstract
Enzymatic biofuel cells are energy conversion devices utilizing biocatalysts to directly convert chemical energy to electricity. Due to their biocompatible, sustainable and maintenance-free properties, they hold the promise as attractive energy sources for powering next generation medical electronics for personalized healthcare. Low current and power output are main bottlenecks of enzymatic biofuel cells to hinder their practical applications. Supercapacitors are able to harness ambitious energy and deliver high-power pulses. Combining enzymatic biofuel cells with supercapacitors to establish self-charging energy-conversion/energy-storage hybrid systems are considered as an effective strategy to improve the current and power output. This design enables the hybrid electric devices to scavenge ambient energy and simultaneously store it and thus increases the efficiency and facilitates the miniaturization for practical application. In this review, we first discuss various structural configurations of these self-charging hybrid systems, and then focus on explaining their charge storage mechanisms, including electrochemical double-layer capacitance, pseudocapacitance and hybrids. Several proof-of-concept applications as implantable and wearable power sources are enumerated. Finally, we provide an overview of challenges and opportunities for research and development of self-charging hybrid devices.
Collapse
Affiliation(s)
- Fei Shen
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Qiming Dai
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Hailin Li
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Xinyang Zhang
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Kang Huang
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Yuanbo Zhou
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China
| | - Xiaohui Zhao
- School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, Suzhou, 215104, China
| |
Collapse
|
2
|
Cui H, Zhang L, Söder D, Tang X, Davari MD, Schwaneberg U. Rapid and Oriented Immobilization of Laccases on Electrodes via a Methionine-Rich Peptide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Haiyang Cui
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| | - Lingling Zhang
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Dominik Söder
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| | - Xiaomei Tang
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany
- DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, Aachen 52074, Germany
| |
Collapse
|
3
|
Trifonov A, Stemmer A, Tel-Vered R. Power Generation by Selective Self-Assembly of Biocatalysts. ACS NANO 2019; 13:8630-8638. [PMID: 31310711 DOI: 10.1021/acsnano.9b03013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Through a careful chemical and bioelectronic design we have created a system that uses self-assembly of enzyme-nanoparticle hybrids to yield bioelectrocatalytic functionality and to enable the harnessing of electrical power from biomass. Here we show that mixed populations of hybrids acting as catalyst carriers for clean energy production can be efficiently stored, self-assembled on functionalized stationary surfaces, and magnetically re-collected to make the binding sites on the surfaces available again. The methodology is based on selective interactions occurring between chemically modified surfaces and ligand-functionalized hybrids. The design of a system with minimal cross-talk between the particles, outstanding selective binding of the hybrids at the electrode surfaces, and direct anodic and cathodic electron transfer pathways leads to mediator-less bioelectrocatalytic transformations which are implemented in the construction of a fast self-assembling, membrane-less fructose/O2 biofuel cell.
Collapse
Affiliation(s)
- Alexander Trifonov
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| | - Andreas Stemmer
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| | - Ran Tel-Vered
- Nanotechnology Group , ETH Zürich , Säumerstrasse 4 , CH - 8803 Rüschlikon , Switzerland
| |
Collapse
|
4
|
Singh DK, Chakraborty S, Dhiman S, Sampath S, George SJ, Eswaramoorthy M. Nanoscale Engineering of Graphene‐Viologen Based 3D Covalent Organic Polymer Interfaces Leading to Efficient Charge‐Transfer for Pseudocapacitive Energy Storage. ChemistrySelect 2019. [DOI: 10.1002/slct.201901366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dheeraj Kumar Singh
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| | - Soumita Chakraborty
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| | - Shikha Dhiman
- New Chemistry Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| | - Srinivasan Sampath
- Inorganic and Physical Chemistry DepartmentIndian Institute of Science (IISc), C.V. Raman Road Bengaluru 560010 India
| | - Subi J. George
- New Chemistry Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Jakkur P.O. Bengaluru 560064 India
| |
Collapse
|
5
|
|
6
|
Brand I, Sęk S. Preface. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Wu G, Gao Y, Zhao D, Ling P, Gao F. Methanol/Oxygen Enzymatic Biofuel Cell Using Laccase and NAD +-Dependent Dehydrogenase Cascades as Biocatalysts on Carbon Nanodots Electrodes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40978-40986. [PMID: 29088536 DOI: 10.1021/acsami.7b12295] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The efficient immobilization of enzymes on favorable supporting materials to design enzyme electrodes endowed with specific catalysis performances such as deep oxidation of biofuels, and direct electron transfer (DET)-type bioelectrocatalysis is highly desired for fabricating enzymatic biofuel cells (BFCs). In this study, carbon nanodots (CNDs) have been used as the immobilizing matrixes and electron relays of enzymes to construct (NAD+)-dependent dehydrogenase cascades-based bioanode for the deep oxidation of methanol and DET-type laccase-based biocathode for oxygen reduction to water. At the bioanode, multiplex enzymes including alcohol dehydrogenase, aldehyde dehydrogenase, and formate dehydrogenase are coimmobilized on CNDs electrode which is previously coated with in situ polymerized methylene blue as the electrocatalyst for oxidizing NADH to NAD+. At the biocathode, fungal laccase is directly cast on CNDs and facilitated DET reaction is allowed. As a result, a novel membrane-less methanol/O2 BFC has been assembled and displays a high open-circuit voltage of 0.71(±0.02) V and a maximum power density of 68.7 (±0.4) μW cm-2. These investigated features imply that CNDs may act as new conductive architectures to elaborate enzyme electrodes for further bioelectrochemical applications.
Collapse
Affiliation(s)
- Guozhi Wu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Yue Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Dan Zhao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Optical Probes and Bioelectrocatalysis (LOPAB), College of Chemistry and Materials Science, Anhui Normal University , Wuhu 241000, P.R. China
| |
Collapse
|
8
|
Majdecka D, Draminska S, Janusek D, Krysinski P, Bilewicz R. A self-powered biosensing device with an integrated hybrid biofuel cell for intermittent monitoring of analytes. Biosens Bioelectron 2017; 102:383-388. [PMID: 29174971 DOI: 10.1016/j.bios.2017.11.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
In this work, we propose an integrated self-powered sensing system, driven by a hybrid biofuel cell (HBFC) with carbon paper discs coated with multiwalled carbon nanotubes. The sensing system has a biocathode made from laccase or bilirubin oxidase, and the anode is made from a zinc plate. The system includes a dedicated custom-built electronic control unit for the detection of oxygen and catechol analytes, which are central to medical and environmental applications. Both the HBFC and sensors, operate in a mediatorless direct electron transfer mode. The measured characteristics of the HBFC with externally applied resistance included the power-time dependencies under flow cell conditions, the sensors performance (evaluated by cyclic voltammetry), and chronoamperometry. The HBFC is integrated with analytical devices and operating in a pulse mode form long-run monitoring experiments. The HBFC generated sufficient power for wireless data transmission to a local computer.
Collapse
Affiliation(s)
- Dominika Majdecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, Banacha 2C, 02-097 Warsaw, Poland
| | - Sylwia Draminska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Dariusz Janusek
- SensoriumLab Sp. z o.o., W. H. Lindleya 16, 02-013 Warsaw, Poland
| | - Paweł Krysinski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
9
|
Reticulated vitreous carbon as a scaffold for enzymatic fuel cell designing. Biosens Bioelectron 2017; 95:1-7. [DOI: 10.1016/j.bios.2017.03.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023]
|
10
|
Wu F, Su L, Yu P, Mao L. Role of Organic Solvents in Immobilizing Fungus Laccase on Single-Walled Carbon Nanotubes for Improved Current Response in Direct Bioelectrocatalysis. J Am Chem Soc 2017; 139:1565-1574. [DOI: 10.1021/jacs.6b11469] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fei Wu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Su
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Science, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Narvaez Villarrubia CW, Soavi F, Santoro C, Arbizzani C, Serov A, Rojas-Carbonell S, Gupta G, Atanassov P. Self-feeding paper based biofuel cell/self-powered hybrid μ-supercapacitor integrated system. Biosens Bioelectron 2016; 86:459-465. [DOI: 10.1016/j.bios.2016.06.084] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|