1
|
Fallatah A, Kuku M, Alqahtani L, Bubshait A, Almutairi NS, Padalkar S, Alotaibi AM. Role of Morphology on Zinc Oxide Nanostructures for Efficient Photoelectrochemical Activity and Hydrogen Production. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5135. [PMID: 39459839 PMCID: PMC11509430 DOI: 10.3390/ma17205135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Energy generation today heavily relies on the field of photocatalysis, with many conventional energy generation strategies now superseded by the conversion of solar energy into chemical or thermal energy for a variety of energy-related applications. Global warming has pointed to the urgent necessity of moving away from non-renewable energy sources, with a resulting emphasis on creating the best photocatalysts for effective solar conversion by investigating a variety of material systems and material combinations. The present study explores the influence of morphological changes on the photoelectrochemical activity of zinc oxide nanostructures by exploiting electrodeposition and capping agents to control the growth rates of different ZnO facets and obtain well-defined nanostructures and orientations. A zinc nitrate (Zn (NO3)2) bath was used to electrodeposit ZnO nanostructures on an indium tin oxide glass (ITO) substrate at 70 °C with an applied potential of -1.0 V. Ethylenediamine (EDA) or ammonium fluoride (NH4F) were added as capping agents to the zinc nitrate bath. Extensive evaluation and characterization of the photoelectrochemical (PEC) capabilities of the resulting morphology-controlled zinc oxide nanostructures confirmed that altering the ZnO morphology can have positive impacts on PEC properties.
Collapse
Affiliation(s)
- Ahmad Fallatah
- Future Mobility Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
- Desalination Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Mohammed Kuku
- Department of Mechanical Engineering, College of Engineering and Computer Science, Jazan University, Jazan 45142, Saudi Arabia;
| | - Laila Alqahtani
- Advance Materials Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (L.A.); (N.S.A.)
| | - Almqdad Bubshait
- Hydrogen Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| | - Noha S. Almutairi
- Advance Materials Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia; (L.A.); (N.S.A.)
| | - Sonal Padalkar
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Abdullah M. Alotaibi
- Hydrogen Technologies Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
2
|
Hassan IU, Naikoo GA, Salim H, Awan T, Tabook MA, Pedram MZ, Mustaqeem M, Sohani A, Hoseinzadeh S, Saleh TA. Advances in Photochemical Splitting of Seawater over Semiconductor Nano-Catalysts for Hydrogen Production: A Critical Review. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Fabrication of Vacuum Evaporated (Cu1-xAgx)2ZnSnSe4 Thin-film Photovoltaic Devices and its Photoconversion Efficiency. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-06982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Delcompare-Rodriguez PA, Seriani N. Ultrathin space charge layer in hematite photoelectrodes: A theoretical investigation. J Chem Phys 2021; 155:114701. [PMID: 34551523 DOI: 10.1063/5.0060417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The space charge layer in hematite photoelectrodes has been analyzed by means of Poisson-Boltzmann equations, the Stern model, and density functional theory, in view of its application for photoelectrochemical water oxidation. The width of the space charge layer can be smaller than ∼10 Å under experimental conditions. In this regime, a substantial part of the potential drop takes place in the Helmholtz layer, leading to important corrections to the Mott-Schottky behavior of the space charge layer capacitance. These results shed light on an unexpected regime of high photoelectrocatalytic efficiency, different from the classical picture of the electrochemical interface of a semiconducting photocatalyst, which is also amenable to direct study by quantum-mechanical atomistic simulations. Density functional theory has been used to calculate the band bending (BB) in the space charge layer in atomistic models of pristine stoichiometric and hydroxylated surfaces. These surface terminations display BBs of 0.14 and 0.49 eV, respectively, with an increasing width of the space charge layer, however still in the sub-nanometer regime. This work shows that, at high doping, the width of the space charge layer of a hematite photoelectrode can become comparable with interatomic distances.
Collapse
Affiliation(s)
| | - N Seriani
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
5
|
Zayed M, Nasser N, Shaban M, Alshaikh H, Hamdy H, Ahmed AM. Effect of Morphology and Plasmonic on Au/ZnO Films for Efficient Photoelectrochemical Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2338. [PMID: 34578652 PMCID: PMC8471190 DOI: 10.3390/nano11092338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022]
Abstract
To improve photoelectrochemical (PEC) water splitting, various ZnO nanostructures (nanorods (NRs), nanodiscs (NDs), NRs/NDs, and ZnO NRs decorated with gold nanoparticles) have been manufactured. The pure ZnO nanostructures have been synthesized using the successive ionic-layer adsorption and reaction (SILAR) combined with the chemical bath deposition (CBD) process at various deposition times. The structural, chemical composition, nanomorphological, and optical characteristics have been examined by various techniques. The SEM analysis shows that by varying the deposition time of CBD from 2 to 12 h, the morphology of ZnO nanostructures changed from NRs to NDs. All samples exhibit hexagonal phase wurtzite ZnO with polycrystalline nature and preferred orientation alongside (002). The crystallite size along (002) decreased from approximately 79 to 77 nm as deposition time increased from 2 to 12 h. The bandgap of ZnO NRs was tuned from 3.19 to 2.07 eV after optimizing the DC sputtering time of gold to 4 min. Via regulated time-dependent ZnO growth and Au sputtering time, the PEC performance of the nanostructures was optimized. Among the studied ZnO nanostructures, the highest photocurrent density (Jph) was obtained for the 2 h ZnO NRs. As compared with ZnO NRs, the Jph (7.7 mA/cm2) of 4 min Au/ZnO NRs is around 50 times greater. The maximum values of both IPCE and ABPE are 14.2% and 2.05% at 490 nm, which is closed to surface plasmon absorption for Au NPs. There are several essential approaches to improve PEC efficiency by including Au NPs into ZnO NRs, including increasing visible light absorption and minority carrier absorption, boosting photochemical stability, and accelerating electron transport from ZnO NRs to electrolyte carriers.
Collapse
Affiliation(s)
- Mohamed Zayed
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
| | - Nourhan Nasser
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
| | - Mohamed Shaban
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia
| | - Hind Alshaikh
- Chemistry Department, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi Arabia;
| | - Hany Hamdy
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
| | - Ashour M. Ahmed
- Nanophotonics and Applications (NPA) Laboratory, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.Z.); (N.N.); (H.H.); (A.M.A.)
| |
Collapse
|
6
|
Sharma S, Kumar D, Khare N. Hierarchical PANI/ZnO nanocomposite: synthesis and synergistic effect of shape-selective ZnO nanoflowers and polyaniline sensitization for efficient photocatalytic dye degradation and photoelectrochemical water splitting. NANOTECHNOLOGY 2020; 31:465402. [PMID: 32764193 DOI: 10.1088/1361-6528/abad5b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hierarchical nanoflowers (NFs) of zinc oxide (ZnO) have been synthesized in the hexagonal wurtzite structure by a facile hydrothermal method. Polyaniline (PANI) has been prepared by the chemical oxidative polymerization method and incorporated with ZnO NFs by the chemisorption method. The potential of the synthesized nanostructures has been demonstrated for efficient photocatalytic degradation of methylene blue (MB) and photoelectrochemical water splitting. The PANI/ZnO nanocomposite has exhibited the enhanced photocatalytic activity which is ∼9 fold higher in comparison to pristine ZnO NFs and enhanced photocurrent density which is ∼16 fold higher than the ZnO photoanode. Importantly, ∼4 fold increment in the incident photon-to-current conversion efficiency (IPCE) is exhibited by PANI/ZnO, than that of ZnO photoanode. The remarkably enhanced photocatalytic and photoelectrochemical performance of PANI/ZnO nanocomposite is attributed to the availability of more interfacial sites facilitated by the hierarchical ZnO NFs, improved overall photoresponse due to its photosensitization with PANI and the resulting type-II heterojunction between them, which helps in the efficient separation of photogenerated charge carriers at the interface. A plausible reaction mechanism for the substantially improved performance of nanostructured PANI/ZnO towards MB degradation and water splitting has also been elucidated.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | | |
Collapse
|
7
|
Tekin D, Kiziltas H, Ungan H. Kinetic evaluation of ZnO/TiO2 thin film photocatalyst in photocatalytic degradation of Orange G. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112905] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Sci Bull (Beijing) 2019; 64:1348-1380. [PMID: 36659664 DOI: 10.1016/j.scib.2019.07.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 01/21/2023]
Abstract
Solar energy driven photoelectrochemical (PEC) water splitting is a clean and powerful approach for renewable hydrogen production. The design and construction of metal oxide based nanoarray photoanodes is one of the promising strategies to make the continuous breakthroughs in solar to hydrogen conversion efficiency of PEC cells owing to their owned several advantages including enhanced reactive surface at the electrode/electrolyte interface, improved light absorption capability, increased charge separation efficiency and direct electron transport pathways. In this Review, we first introduce the structure, work principle and their relevant efficiency calculations of a PEC cell. We then give a summary of the state-of the-art research in the preparation strategies and growth mechanism for the metal oxide based nanoarrays, and some details about the performances of metal oxide based nanoarray photoanodes for PEC water splitting. Finally, we discuss key aspects which should be addressed in continued work on realizing high-efficiency metal oxide based nanoarray photoanodes for PEC solar water splitting systems.
Collapse
|
9
|
Aboud AA, Shaban M, Revaprasadu N. Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Adv 2019; 9:7729-7736. [PMID: 35521190 PMCID: PMC9061195 DOI: 10.1039/c8ra10599e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/22/2019] [Indexed: 01/14/2023] Open
Abstract
In the present study, the effects of metallic doping on the photoelectron\chemical properties of zinc oxide thin films have been studied. All films have been deposited using the spray pyrolysis technique at a constant doping level of 3 wt% whereby Cu, Ni, and Pb were used as dopants. The structure of all films was studied by X-ray diffraction which showed the grain size of all doped films to be 50 nm. The energy band gap of all films was estimated using optical transmission spectroscopy. The Ni, Cu, and Pb-doped ZnO photoelectrodes were applied for the photoelectrochemical (PEC) H2 generation from H2O. Pb doping leads to the highest photocurrent of the ZnO photoelectrodes. The current density–potential characteristics were measured under white light and monochromatic illumination. The stability of the electrode was quantified as a function of the number of H2 production runs and exposure time. Finally, the incident photon-to-current conversion efficiency, IPCE, and applied bias photon-to-current efficiency, ABPE, were calculated. The optimum IPCE at 390 nm was ∼30% whereas the ABPE was 0.636 at 0.5 V. In the present study, the effects of metallic doping on the photoelectron\chemical properties of zinc oxide thin films have been studied.![]()
Collapse
Affiliation(s)
- Ahmed A. Aboud
- Department of Physics
- Faculty of Science
- Beni-Suef University
- Beni-Suef
- Egypt
| | - Mohamed Shaban
- Department of Physics
- Faculty of Science
- Beni-Suef University
- Beni-Suef
- Egypt
| | | |
Collapse
|